Skip to main content

Classification of ECG Cardiac Arrhythmias Using Bijective Soft Set

  • Chapter
Big Data in Complex Systems

Part of the book series: Studies in Big Data ((SBD,volume 9))

Abstract

This paper presents the new automated classification method for electrocardiogram (ECG) arrhythmia. Electrocardiogram datasets are generally called as big data. Big Data are the group of huge volumes of unstructured data. Big Data means enormous amounts of data, such large that it is difficult to collect, store, manage, analyze, predict, visualize, and model the data. Electrocardiography deals with the electrical movement of the heart. The order of cardiac health is given by ECG and heart rate. A study of the nonlinear dynamics of electrocardiogram (ECG) signals for arrhythmia characterization is considered in this work. Cardiac problems are considered to be the most deadly disease in medical world. Cardiac arrhythmia is abnormality of heart rhythm, in fact refers to disorder in electrical conduction system of the heart. In this paper, computerized ECG interpretations are used to identify arrhythmias. It is a process of ECG signal acquisition, eliminating noise (De-noising) from ECG signal, detecting wave parameters (P, Q, R, S and T) and rhythm classification. Substantial progress has been made over the years in improvising techniques for signal conditioning, extraction of relevant wave parameters and rhythm classification. However, many problems and issues, especially those related to detection of multiple arrhythmic events using soft computing techniques is still need to be addressed in a broader manner to improve the prospect of commercial automated arrhythmia analysis in mass health care centres. The main objective of this paper is to present a classifier system based on Bijective soft set in order to classify ECG signal data into five classes (Normal, Left bundle branch blocks, Right bundle branch blocks, premature ventricular contractions and Paced rhythm class). To complete this objective, an algorithm for detection of P, QRS and T waves are applied followed by IBISOCLASS Classifier. The experimental results are acquired by examining the proposed method on ECG data from the MIT-BIH arrhythmia database. The proposed algorithm is also compared with the well-known standard classification algorithms namely Back propagation network (BPN), Decision table, J48 and Naïve Bayes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alejo, R., Toribio, P., Valdovinos, R.M., Pacheco-Sanchez, J.H.: A Modified Back-Propagation Algorithm to Deal with Severe Two-Class Imbalance Problems on Neural Networks. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera López, J.A., Boyer, K.L. (eds.) MCPR 2012. LNCS, vol. 7329, pp. 265–272. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  • Azar, A.T.: Neuro-fuzzy feature selection approach based on linguistic hedges for medical diagnosis. International Journal of Modelling, Identification and Control (IJMIC) 22(3) (forthcoming, 2014)

    Google Scholar 

  • Azar, A.T., Banu, P.K.N., Inbarani, H.H.: PSORR - An Unsupervised Feature Selection Technique for Fetal Heart Rate. In: 5th International Conference on Modelling, Identification and Control (ICMIC 2013), Egypt, August 31-September 1-2 (2013)

    Google Scholar 

  • Azar, A.T., Hassanien, A.E.: Dimensionality Reduction of Medical Big Data Using Neural-Fuzzy Classifier. Soft Computing (2014), doi:10.1007/s00500-014-1327-4

    Google Scholar 

  • Benali, R., Reguig, F.B., Slimane, Z.H.: Automatic Classification of Heartbeats Using Wavelet Neural Network. Journal of Medical System 36(2), 883–892 (2012)

    Article  Google Scholar 

  • Charfi, F., Kraiem, A.: Comparative Study of ECG Classification Performance Using Decision Tree Algorithms. International Journal of E-Health and Medical Communication 3(4), 102–120 (2012)

    Article  Google Scholar 

  • De Chazal, P., Celler, B.G., Rei, R.B.: Using wavelet coefficients for the classification of the electrocardiogram. In: Proceedings of the 22nd Annual International Conference of the IEEE, vol. 1(1), pp. 64–67 (2000), http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7218

  • Dickhaus, H., Heinrich, H.: Classifying bio-signals with wavelet networks-a method for noninvasive diagnosis. IEEE Engineering in Medicine and Biology 15(5), 103–111 (1996)

    Article  Google Scholar 

  • Dong, T., Shang, W., Zhu, H.: Naïve Bayesian Classifier Based on the Improved Feature Weighting Algorithm. Advanced Research on Computer Science and Information Engineering 152(1), 142–147 (2011)

    Article  Google Scholar 

  • Gacek, A., Pedrycz, W.: A granular description of ECG signals. IEEE Transaction on Biomedical Engineering 53(10), 1972–1982 (2006)

    Article  Google Scholar 

  • Giovanni, B., Christian, B., Sergio, F.: Possibilities of using neural networks for ECG classification. Journal of Electrocardiology 29(1), 10–16 (2001)

    Google Scholar 

  • Gong, K., Xiao, Z., Zhang, X.: The Bijective soft set with its operations. An International Journal on Computers & Mathematics with Applications 60(8), 2270–2278 (2008)

    Article  MathSciNet  Google Scholar 

  • Hari, M.R., Anuragm, T., Shailja, S.: ECG signal processing for abnormalities detection using multi-resolution wavelet transform and Artificial Neural Network classifier. Science Direct 46(9), 3238–3246 (2013)

    Google Scholar 

  • Hassan, H.H., Paul, K.J., Abraham, T.M.: Classification of Arrhythmia Using Hybrid Networks. Journal of Medical Systems 35(6), 1617–1630 (2011)

    Article  Google Scholar 

  • Homaeinezhad, M.R., Atyabi, S.A., Tavakkoli, E., Toosi, H.N., Ghaffari, A., Ebrahimpour, R.: ECG arrhythmia recognition via a neuro-SVM–KNN hybrid classifier with virtual QRS image-based geometrical features. An International Journal of Expert Systems with Applications 39(2), 2047–2058 (2012)

    Article  Google Scholar 

  • Inan, O.T., Giovangrandi, L., Kovacs, G.T.: A Robust Neural-Network-Based Classification of Premature Ventricular Contractions Using Wavelet Transform and Timing Interval Features. IEEE Transactions on Biomedical Engineering 53(12), 2507–2515 (2006)

    Article  Google Scholar 

  • Inbarani, H.H., Azar, A.T., Jothi, G.: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis. Computer Methods and Programs in Biomedicine 113(1), 175–185 (2014)

    Article  Google Scholar 

  • Inbarani, H.H., Banu, P.K.N., Azar, A.T.: Feature selection using swarm-based relative reduct technique for fetal heart rate. Neural Computing and Applications (2013), doi:10.1007/s00521-014-1552-x

    Google Scholar 

  • Inbarani, H.H., Jothi, G., Azar, A.T.: Hybrid Tolerance-PSO Based Supervised Feature Selection For Digital Mammogram Images. International Journal of Fuzzy System Applications (IJFSA) 3(4), 15–30 (2013)

    Article  Google Scholar 

  • Issac Niwas, S., Shantha Selva Kumari, R., Sadasivam, V.: Artificial neural network based automatic cardiac abnormalities classification. In: Proceedings of the 6th International Conference on Computational Intelligence and Multimedia Applications, pp. 41–46 (2005)

    Google Scholar 

  • Jing, L., Cheng, J., Shi, J., Huang, F.: Brief Introduction of Back Propagation (BP) Neural Network Algorithm and Its Improvement. In: Jin, D., Lin, S. (eds.) Advances in CSIE, Vol. 2. AISC, vol. 169, pp. 553–558. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  • Jinkwon, K., Hang, S.S., Kwangsoo, S., Myoungho, L.: Robust algorithm for arrhythmia classification in ECG using extreme learning machine. BioMedical Engineering OnLine (2009)

    Google Scholar 

  • Karpagachelvi, S., Arthanari, M., Sivakumar, M.: Classification of electrocardiogram signals with support vector machines and extreme learning machine. Neural Computing and Applications 21(6), 1331–1339 (2012)

    Article  Google Scholar 

  • Lin, C.H., Du, Y.C., Chen, T.: Adaptive wavelet network for multiple cardiac arrhythmias recognition. Expert Systems with Applications 34(4), 2601–2611 (2008)

    Article  Google Scholar 

  • Liu, H., Feng, B., Wei, J.: An Effective Data Classification Algorithm Based on the Decision Table Grid. In: Seventh IEEE/ACIS International Conference on Computer and Information Science, pp. 306–311 (2008)

    Google Scholar 

  • Maglaveras, N., Stamkopoulos, T., Diamantaras, K., Pappas, C., Strintzis, M.: ECG pattern recognition and classification using nonlinear transformations and neural networks: a review. International Journal of Medical Informatics 52(1-3), 191–208 (1998)

    Article  Google Scholar 

  • Mai, V., Khalil, I., Meli, C.: ECG biometric uses multilayer perceptron and radial basis function neural networks. In: Proceedings of the 33rd Annual International Conference of the IEEE EMBS, pp. 2745–2748 (2011)

    Google Scholar 

  • Marcel, R.R., Jamil, F.S., Philip, J.: Beat Detection and Classification of ECG using self-organizing maps. In: Proceedings of the 19th International Conference of the IEEE EMBS, vol. 1(1), pp. 89–97 (1997)

    Google Scholar 

  • Mark, R., Moody, G.: MIT–BIH arrhythmia database directory, http://ecg.mit.edu/dbinfo.html

  • Engin, M.: ECG beat classification using neuro – fuzzy network. Pattern Recognition Letters 25(15), 1715–1722 (2004)

    Article  Google Scholar 

  • Melgani, F., Bazi, Y.: Classification of Electrocardiogram Signals with Support Vector Machines and Particle Swarm Optimization. IEEE Transactions on Information Technology in Biomedicine 12(5), 667–677 (2008)

    Article  Google Scholar 

  • Minami, K., Nakajima, H., Toyoshima, T.: Real-time discrimination of ventricular tachyarrhythmia with fourier-transform neural network. IEEE Transaction on Biomedical Engineering 46(2), 179–185 (1999)

    Article  Google Scholar 

  • Minghao, P., Yongjun, P., Shon, H.S., Jang-Whan, B., Ryu, K.H.: Evolutional Diagnostic Rules Mining for Heart Disease Classification Using ECG Signal Data. Advances in Control and Communication 137(1), 673–680 (2012)

    Google Scholar 

  • Mitra, S., Mitra, M., Chaudhuri, B.B.: A Rough-Set-Based Inference Engine for ECG Classification. IEEE Transactions on Instrumentation and Measurement 55(6), 2198–2206 (2006)

    Article  Google Scholar 

  • Molodtsov: Soft set theory-Rough first results. Computational Mathmetics Application 37(4-5), 19–31 (1999)

    Google Scholar 

  • Moody, G.B., Mark, R.G.: The impact of the MIT-BIH Arrhythmia Database. IEEE Engineering in Medicine and Biology Magazine 20(1), 45–50 (2001)

    Article  Google Scholar 

  • Nazmy, T.M., El-Messiry, H., Al-Bokhity, B.: Adaptive neuro-fuzzy inference system for classification of ECG signals. In: Proceeding of the 7th International Conference on Informatics and Systems, pp. 1–6 (2010)

    Google Scholar 

  • Osowski, S., Linh, T.H.: ECG beat recognition using fuzzy hybrid neural network. IEEE Transaction on Biomedical Engineering 48(11), 1265–1271 (2001)

    Article  Google Scholar 

  • Özbay, Y.: A New Approach to Detection of ECG Arrhythmias: Complex Discrete Wavelet Transform Based Complex Valued Artificial Neural Network. Journal of Medical System 33(6), 435–445 (2009)

    Article  Google Scholar 

  • Özbay, Y., Ceylan, R., Karlik, B.: A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Computers in Biology and Medicine 36(4), 376–388 (2006)

    Article  Google Scholar 

  • Pan, J., Tompkins, W.: A real-time QRS detection algorithm. IEEE Transactions Biomedical Engineering 32(3), 230–236 (1985)

    Article  Google Scholar 

  • Portet, F., Hernández, A.I., Carrault, G.: Evaluation of real-time QRS detection algorithms in variable contexts. Medical and Biological Engineering and Computing 43(3), 379–385 (2005)

    Article  Google Scholar 

  • Prasad, G.K., Sahambi, J.S.: Classification of ECG arrhythmias using multi-resolution analysis and neural networks. In: Proceedings of the IEEE Conference on Convergent Technologies, vol. 1(1), pp. 227–231 (2003)

    Google Scholar 

  • Qin, S., Ji, Z., Zhu, H.: The ECG recording and analysis instrumentation based on virtual instrument technology and continuous wavelet transform. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4(1), pp. 3176–3179 (2003)

    Google Scholar 

  • Saxena, S.C., Kumar, V., Hamde, S.T.: Feature extraction from ECG signals using wavelet transforms for disease diagnostics. International Journal of System and Science 33(13), 1073–1085 (2002)

    Article  MATH  Google Scholar 

  • Senthilkumar, S., Inbarani, H.H., Udhayakumar, S.: Modified Soft Rough set for Multiclass Classification. In: Krishnan, G.S.S., Anitha, R., Lekshmi, R.S., Senthil Kumar, M., Bonato, A., Graña, M. (eds.) Computational Intelligence, Cyber Security and Computational Models. AISC, vol. 246, pp. 379–384. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  • Udhayakumar, S., Inbarani, H.H., Senthilkumar, S.: Improved Bijective-Soft-Set-Based Classification for Gene Expression Data. In: Krishnan, G.S.S., Anitha, R., Lekshmi, R.S., Senthil Kumar, M., Bonato, A., Graña, M. (eds.) Computational Intelligence, Cyber Security and Computational Models. AISC, vol. 246, pp. 127–132. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  • Udhayakumar, S., Inbarani, H.H., Senthilkumar, S.: Bijective soft set based classification of Medical data. In: International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME), pp. 517–521 (2013)

    Google Scholar 

  • Wen, C., Lin, T.C., Chang, K.C., Huang, C.H.: Classification of ECG complexes using self-organizing CMAC. Measurement 42(3), 399–407 (2009)

    Article  Google Scholar 

  • Wieben, O., Afonso, V.X., Tompkins, W.J.: Classification of premature ventricular complexes using filter bank features, Introduction of decision trees and a fuzzy rule-based system. Medical & Biological Engineering & Computing 37(5), 560–565 (1999)

    Article  Google Scholar 

  • Yu, S.N., Chou, K.T.: Integration of independent component analysis and neural networks for ECG beat classification. Expert Systems with Applications 34(4), 2814–2846 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Udhaya Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, S.U., Inbarani, H.H. (2015). Classification of ECG Cardiac Arrhythmias Using Bijective Soft Set. In: Hassanien, A., Azar, A., Snasael, V., Kacprzyk, J., Abawajy, J. (eds) Big Data in Complex Systems. Studies in Big Data, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-11056-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11056-1_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11055-4

  • Online ISBN: 978-3-319-11056-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics