Skip to main content

Abstract

This paper presents a numerical model based on Discrete Element Method (DEM) used to reproduce a series of tests of dry granular flow. The flow was composed of poly-dispersed coarse-grained angular particles flowing in an inclined flume and interacting with a divided rigid wall. The normal impact force against the wall has been studied in details considering the force on each part of the wall. The model has been calibrated based on the flow thickness measurements. By quantitative comparison with experimental data, the model showed good agreement in terms of peak force on each part of the wall, the time of the peak and also the residual force values at the end of the tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jakob, M., Hungr, O.: Debris-flow Hazards and Related Phenomena. Springer, Heidelberg (2005)

    Google Scholar 

  2. Jiang, Y., Towhata, I.: Experimental Study of Dry Granular Flow and Impact Behavior against a Rigid Retaining Wall. Rock Mechanics and Rock Engineering 46(4), 713–729 (2013)

    Article  Google Scholar 

  3. Guasti, G., Volkwein, A., Wendeler, C.: Design of Flexible Debris Flow Barriers. In: Genevois, R., Hamilton, D.L., Prestininzi, A. (eds.) 5th International Conference on Debris-Flow Hazard “Mitigation, Mechanics, Prediction and Assessment”, Padua, Italy, June 14-17, pp. 1093–1100. Casa Editrice Università La Sapienza, Rome (2011)

    Google Scholar 

  4. Kishi, N., Ikeda, K., Konno, H., Kawase, R.: Prototype Impact Test on Rockfall Retaining Walls and its Numerical Simulation. In: Proceedings of Structures under Shock and Impact IV, Cambridge, England, pp. 351–360 (2000)

    Google Scholar 

  5. Nicot, F., Cambou, B., Mazzoleni, G.: Design of Rockfall Restraining Nets from a Discrete Element Modeling. Rock Mechanics and Rock Engineering 34(2), 99–118 (2001)

    Article  Google Scholar 

  6. Volkwein, A.: Numerical Simulation of Flexible Rockfall Protection Systems. In: Proceedings of the International Conference on Computing in Civil Engineering, Cancun, Mexico, July 12-15, p. 11. ASCE (2005)

    Google Scholar 

  7. Hutter, K., Koch, T., Plüss, C., Savage, S.B.: The Dynamics of Avalanches of Granular Materials from Initiation to Runout. Acta Mechanica 109, 127–165 (1995)

    Article  MathSciNet  Google Scholar 

  8. Azana, E., Chevor, F., Moucheront, P.: Experimental Study of Collisional Granular Flows down an Inclined Plane. Journal of Fluid Mechanics 400, 199–227 (1999)

    Article  Google Scholar 

  9. Pudasaini, S.P., Hutter, K.: Rapid Shear Flows of Dry Granular Masses down Curved and Twisted Channels. Journal of Fluid Mechanics 495, 193–208 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Silbert, L.E., Erta, S.D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.: Granular Flow Down an Inclined Plane: Bagnold Scaling and Rheology. Physical Review E 64, 051302 (2001)

    Google Scholar 

  11. Calvetti, F., Crosta, G., Tatarella, M.: Numerical Simulation of Dry Granular Flows: From the Reproduction of Small Scale Experiments to the Prediction of Rock Avalanches. Rivista Italiana di Geotecnica 21(2), 1–38 (2000)

    Google Scholar 

  12. Faug, T., Beguin, R., Benoit, C.: Mean Steady Granular Force on a Wall Over-flowed by Free-surface Gravity-driven Dense Flows. Physical Review E 80, 021305 (2009)

    Google Scholar 

  13. Campbell, C.S., Cleary, P.W., Hopkins, M.: Large-scale Landslide Simulations: Global Deformation, Velocities and Basal Friction. Journal of Geophysical Research 100(B5), 8267–8283 (1995)

    Article  Google Scholar 

  14. Lemieux, P.A., Durian, D.J.: From Avalanches to Fluid Flow: a Continuous Picture of Grain Dynamics Down a Heap. Physical Review Letters 85, 4273–4276 (2000)

    Article  Google Scholar 

  15. Faug, T., Lachamp, P., Naaim, M.: Experimental Investigation on Steady Granular Flows Interacting With an Obstacle Down an Inclined Channel: Study of the Dead Zone Upstream From the Obstacle. Application to Interaction between Dense Snow Avalanches and Defense Structures. Natural Hazards and Earth System Sciences 2, 187–191 (2002)

    Article  Google Scholar 

  16. Valentino, R., Barla, G., Montrasio, L.: Experimental Analysis and Microme-chanical Modeling of Dry Granular Flow and Impacts in Laboratory Flume Tests. Rock Mechanics and Rock Engineering 41(1), 153–177 (2008)

    Article  Google Scholar 

  17. Cundall, P.A., Strack, O.D.L.: A Discrete Numerical Model for Granular Assemblies. Géotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  18. Bertrand, D., Trad, A., Limam, A., Silvani, C.: Full-Scale Dynamic Analysis of an Innovative Rockfall Fence Under Impact Using the Discrete Element Method: from the Local Scale to the Structure Scale. Rock Mechanics and Rock Engineering 45(5), 885–900 (2012)

    Google Scholar 

  19. Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtès, L., Sibille, L., Stránský, J., Thoeni, K.: Yade Documentation. In: Šmilauer, V. (ed.) The Yade Project, 1st edn. (2010), http://yade-dem.org/doc/

  20. Schwager, T., Pöschel, T.: Coefficient of Restitution and Linear–dashpot Model Revisited. Granular Matter 9(6), 465–469 (2007)

    Article  Google Scholar 

  21. Sánchez, P., Scheeres, D.J.: Simulating Asteroid Rubble Piles with a Self-gravitating Soft-sphere Distinct Element Method Mode. The Astrophysical Journal 727(2), 120–133 (2011)

    Article  Google Scholar 

  22. Ghaisas, N., Wassgren, C.R., Sadeghi, F.: Cage Instabilities in Cylindrical Roller Bearings. Journal of Tribology 126, 681–689 (2004)

    Article  Google Scholar 

  23. Chambers, J.M., Hastie, T.J.: Statistical Models in S. Wadsworth & Brooks/Cole, Pacific Grove (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Albaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Albaba, A., Lambert, S., Nicot, F., Chareyre, B. (2015). Modeling the Impact of Granular Flow against an Obstacle. In: Wu, W. (eds) Recent Advances in Modeling Landslides and Debris Flows. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-11053-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11053-0_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11052-3

  • Online ISBN: 978-3-319-11053-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics