Skip to main content

Differential-Algebraic Equations from a Functional-Analytic Viewpoint: A Survey

  • Chapter
  • First Online:

Part of the book series: Differential-Algebraic Equations Forum ((DAEF))

Abstract

The purpose of this paper is to provide an overview on the state of the art concerning functional-analytic properties associated with differential-algebraic equations (DAEs). We summarize the relevant literature and develop a basic theory of linear and nonlinear differential-algebraic operators. In particular, we consider Fredholm properties, normal solvability, generalized inverses, least-squares solutions, splittings of regular linear differential-algebraic operators, bounded outer inverses, local solvability of equations with regular nonlinear differential-algebraic operators, Newton–Kantorovich iterations, and regularizations of the ill-posed problems arising from higher-index operators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In contrast to Sect. 3, here we do not fix these projectors to be orthogonal.

  2. 2.

    ker Π μ−1 and im  Π μ−1 are used in \(\mathbb{R}^{m}\) and in \(\mathcal{C}_{D}^{1}\) , but no confusion should arise.

References

  1. Ambrosetti, A., Prodi, G.: A Primer in Nonlinear Analysis, Cambridge studies in advanced mathematics, vol. 34. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  2. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baumanns, S.: Coupled Electromagnetic Field/Circuit Simulation. Ph.D. thesis, Universität zu Köln, Juni 2012. Logos, Berlin (2012)

    Google Scholar 

  4. Biegler, L., Campbell, S.L., Mehrmann, V.: Control and optimization with differential-algebraic constraints. SIAM, Philadelphia (2011)

    Google Scholar 

  5. Boyarintsev, Y.E.: Regular and Singular Systems of Linear Ordinary Differential Equations. Nauka (Sibirskoe otdelenie), Novosibirsk (1980, in Russian)

    Google Scholar 

  6. Brenan, K.E., Campbell, S.L., Petzold, L.R.: The Numerical Solution of Initial Value Problems in Ordinary Differential-Algebraic Equations. North Holland, New York (1989)

    Google Scholar 

  7. Campbell, S.L.: Singular Systems of Differential Equations II. Research Notes in Mathematics. Pitman, Marshfield (1982)

    MATH  Google Scholar 

  8. Campbell, S.L.: One canonical form for higher index linear time varying singular systems. Circuits Syst. Signal Process. 2, 311–326 (1983)

    Article  MATH  Google Scholar 

  9. Campbell, S.L.: Regularization of linear time varying singular systems. Automatica 20, 365–370 (1984)

    Article  MATH  Google Scholar 

  10. Campbell, S.L., Gear, C.W.: The index of general nonlinear daes. Numer. Math. 72, 173–196 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Campbell, S.L., Kunkel, P., Mehrmann, V.: Regularization of linear and nonlinear descriptor systems. In: Biegler, L.T., Campbell, S.L., Mehrmann, V. (eds.) Control and Optimization with Differential-Algebraic Constraints, Advances in Design and Control, pp. 17–36. SIAM, New York (2012)

    Chapter  Google Scholar 

  12. Chistyakov, V.F.: Vyrozhdennye sistemy obyknovennykh differentsial’nykh uravnenij, chapter 3: K metodam resheniya singul’yarnykh linejnykh sistem obyknovennykh differentsial’nykh uravnenij, pp. 37–65. Nauka, Novosibirsk (1982, in Russian, edited by Yu. E. Boyarintsev)

    Google Scholar 

  13. Chistyakov, V.F.: On Noetherian index of differential/algebraic systems. Sib. Math. J. 34(3), 583–592 (1993)

    Article  MathSciNet  Google Scholar 

  14. Chistyakov, V.F.: Algebro-Differential’nye Operatory s Konechnomernym Yadrom. Nauka, Novosibirsk (1996, in Russian)

    Google Scholar 

  15. Chistyakov, V.F.: Regularization of differential-algebraic equations. Comput. Math. Math. Phys. 51(12), 2052–2064 (2011). Original Russian text published in Zhurnal Vycislitel’noi Matematiki i Matematicheskoi Fiziki, vol. 51, pp. 2181–2193 (2011)

    MATH  MathSciNet  Google Scholar 

  16. Chistyakov, V.F., Chistyakova, E.V.: Application of the least squares method to solving linear differential-algebraic equations. Numer. Anal. Appl. 6(1), 77–90 (2013). Original Russian text published in Sibirskii Zhurnal Vycislitel’noi Matematiki, vol. 16, pp. 81–95 (2013)

    MATH  Google Scholar 

  17. Chistyakov, V.F., Shcheglova, A.A.: Izbrannye glavy teorii algebro-differential’nykh sistem. Nauka, Novosibirsk (2003, in Russian)

    Google Scholar 

  18. Cobb, D.: On the solutions of linear differential equations with singular coefficients. J. Differ. Equ. 46, 310–323 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  19. Craven, B.D., Nashed, M.Z.: Generalized implicit function theorems when the derivative has no bounded inverse. Nonlinear Anal. Theory Methods Appl. 6(4), 375–387 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dautray, R., Lions, J.-L.: Functional and Variational Methods. Mathematical Analysis and Numerical Methods for Science and Technology, vol. 2. Springer, Berlin/Heidelberg (1988)

    Google Scholar 

  21. Degenhardt, A.: A collocation method for boundary value problems of transferable differential-algebraic equations. Preprint (Neue Folge) 182, Humboldt-Universität zu Berlin, Sektion Mathematik (1988)

    Google Scholar 

  22. Degenhardt, A.: Collocation for transferable differential-algebraic equations. In: Griepentrog, E., Hanke, M., März, R. (eds.) Berlin Seminar on Differential-Algebraic Equations, vol. 92-1, pp. 83–104 (1992)

    Google Scholar 

  23. Dokchan, R.: Numerical Intergration of Differential-Algebraic Equations with Harmless Critical Points. Ph.D. thesis, Humboldt-University of Berlin (2011)

    Google Scholar 

  24. Engl, H.W., Groetsch, C.W. (eds.): Inverse and Ill-Posed Problems, Notes and Reports in Mathematics in Sciences and Engineering, vol. 4. Academic, Boston/Orlando/London (1987)

    Google Scholar 

  25. Engl, H.W., Hanke, M., Neubauer, A.: Tikhonov regularization of nonlinear differential-algebraic equations. In: Sabatier, P.C. (ed.) Inverse Methods in Action, pp. 92–105. Springer, Berlin/Heidelberg (1990)

    Chapter  Google Scholar 

  26. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Mathematics and its Application. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  27. Favini, A., Yagi, A.: Degenerate Differential Equations in Banach Spaces. Pure and Applied Mathematics. Marcel Dekker, New York (1999)

    MATH  Google Scholar 

  28. Führer, C., Leimkuhler, B.J.: Numerical solution of differential-algebraic equations for constrained mechanical motion. Numer. Math. 59, 55–69 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie, Berlin (1974)

    MATH  Google Scholar 

  30. Gantmacher, F.R.: Matrizenrechnung I+II. VEB Deutcher Verlag der Wissenchaften, Berlin (1970)

    Google Scholar 

  31. Gorbunov, V.K., Petrischev, V.V., Sviridov, V.Y.: Development of normal spline method for linear integro-differential equations. In: Sloot, P.M.A., Abramson, D., Bogdanov, A., Dongarra, J.J., Zomaya, A., Gorbachev, Y. (eds.) International Conference Computational Science—ICCS 2003, Lecture Notes in Computer Science, vol. 2658, pp. 492–499. Springer, Berlin/Heidelberg (2003)

    Google Scholar 

  32. Griepentrog, E., März, R.: Differential-Algebraic Equations and Their Numerical Treatment. Teubner-Texte zur Mathematik No. 88. BSB B.G. Teubner Verlagsgesellschaft, Leipzig (1986)

    Google Scholar 

  33. Griepentrog, E., März, R.: Basic properties of some differential-algebraic equations. Zeitschrift für Analysis und ihre Anwendungen 8(1), 25–40 (1989)

    MATH  Google Scholar 

  34. Groetsch, C.W.: The theory of Tikhonov regularization for Fredholm equations of the first kind. Pitman, London (1984)

    MATH  Google Scholar 

  35. Hairer, E., Lubich, Ch., Roche, M.: The Numerical Solution of Differential-Algebraic Equations by Runge–Kutta Methods. Lecture Notes in Mathematics, vol. 1409. Springer, Heidelberg (1989)

    Google Scholar 

  36. Hanke, M.: On a least-squares collocation method for linear differential-algebraic equations. Numer. Math. 54, 79–90 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hanke, M.: Beiträge zur Regularisierung von Randwertaufgaben für Algebro-Differentialgleichungen mit höherem Index. Dissertation(B), Habilitation, Humboldt-Universität zu Berlin, Institut für Mathematik (1989)

    Google Scholar 

  38. Hanke, M.: Linear differential-algebraic equations in spaces of integrable functions. J. Differ. Equ. 79, 14–30 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  39. Hanke, M.: On the regularization of index 2 differential-algebraic equations. J. Math. Anal. Appl. 151, 236–253 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  40. Hanke, M.: Regularization methods for higher index differential-algebraic equations. In: Griepentrog, E., Hanke, M., März, R. (eds.) Berlin Seminar on Differential-Algebraic Equations, vol. 92-1, pp. 105–141 (1992)

    Google Scholar 

  41. Hanke, M.: Asymptotic expansions for regularization methods of linear fully implicit differential-algebraic equations. Zeitschrift für Analysis und ihre Anwendungen 13, 513–535 (1994)

    MATH  MathSciNet  Google Scholar 

  42. Hanke, M.: Regularization of differential-algebraic equations revisited. Math. Nachr. 174, 159–183 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  43. Hanke, M., März, R., Neubauer, A.: On the regularization of linear differential-algebraic equations. In: Engl, H.W., Groetsch, C.W. (eds.) Inverse and Ill-posed Problems, Notes and Reports in Mathematics in Science and Engineering, vol. 4, pp. 523–540. Academic, Orlando (1987)

    Chapter  Google Scholar 

  44. Hanke, M., März, R., Neubauer, A.: On the regularization of a certain class of nontransferable differential-algebraic equations. J. Differ. Equ. 73(1), 119–132 (1988)

    Article  MATH  Google Scholar 

  45. Heuser, H.: Funktionalanalysis. Mathematische Leitfäden. B.G.Teubner Stuttgart (1992)

    MATH  Google Scholar 

  46. Ilchmann, A., Reis, T. (eds.): Surveys in Differential-Algebraic Equations I. Differential-Algebraic Equations Forum. Springer, Heidelberg/New York/Dordrecht/London (2013)

    MATH  Google Scholar 

  47. Kato, T.: Perturbation theory for linear operators. Springer, Berlin/Heidelberg/New York (1995). Reprint of the 1980 edition

    Google Scholar 

  48. Knorrenschild, M.: Regularisierung von differentiell-algebraischen Systemen—theoretische und numerische Aspekte. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (1988)

    Google Scholar 

  49. Kronecker, L.: Gesammelte Werke, volume III, chapter Reduktion der Scharen bilinearer Formen, pp. 141–155. Akad. d. Wiss. Berlin (1890)

    Google Scholar 

  50. Kunkel, P., Mehrmann, V.: Generalized inverses of differential-algebraic operators. SIAM J. Matrix Anal. Appl. 17, 426–442 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  51. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations: Analysis and Numerical Solution. EMS Publishing House, Zürich (2006)

    Book  Google Scholar 

  52. Kurina, G.A.: Singular perturbations of control problems with equation of state not solved for the derivative (a survey). J. Comput. Syst. Sci. Int. 31(6), 17–45 (1993)

    MathSciNet  Google Scholar 

  53. Lamour, R., März, R.: Detecting structures in differential algebraic equations: computational aspects. J. Comput. Appl. Math 236(16), 4055–4066 (2012). Special Issue: 40 years of Numeric Mathematics

    Google Scholar 

  54. Lamour, R., März, R.: Differential-algebraic equations with regular local matrix pencils. Vestnik YuUrGU. Seriya Matematicheskoe modelirovanie i programmipovanie 6(4), 39–47 (2013)

    MATH  Google Scholar 

  55. Lamour, R., März, R., Tischendorf, C.: Differential-Algebraic Equations: A Projector Based Analysis. Differential-Algebraic Equations Forum. Springer, Berlin/Heidelberg/New York/Dordrecht/London (2013) (Series Editors: A. Ilchman, T. Reis)

    Google Scholar 

  56. März, R.: On difference and shooting methods for boundary value problems in differential-algebraic equations. ZAMM 64(11), 463–473 (1984)

    Article  MATH  Google Scholar 

  57. März, R.: On correctness and numerical treatment of boundary value problems in DAEs. Zhurnal Vychisl. Matem. i Matem. Fiziki 26(1), 50–64 (1986)

    MATH  Google Scholar 

  58. März, R.: Numerical methods for differential-algebraic equations. Acta Numer. 1, 141–198 (1992)

    Article  Google Scholar 

  59. März, R.: On linear differential-algebraic equations and linearizations. Appl. Numer. Math. 18, 267–292 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  60. März, R.: Nonlinear differential-algebraic equations with properly formulated leading term. Technical Report 2001–3, Humboldt-Universität zu Berlin, Institut für Mathematik (2001)

    Google Scholar 

  61. März, R.: Notes on linearization of daes and on optimization with differential-algebraic constraints. In: Biegler, L.T., Campbell, S.L., Mehrmann, V. (eds.) Control and Optimization with Differential-Algebraic Constraints, Advances in Design and Control, pp. 37–58. SIAM, New York (2012)

    Chapter  Google Scholar 

  62. Nashed, M.Z.: Inner, outer, and generalized inverses in banach and hilbert spaces. Numer. Funct. Anal. Optimiz. 9, 261–325 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  63. Nashed, M.Z.: A new approach to classification and regularization of ill-posed operator equations. In: Engl, H.W., Groetsch, C.W. (eds.) Inverse and Ill-posed Problems, Notes and Reports in Mathematics in Science and Engineering, vol. 4, pp. 53–75. Academic, New York (1987)

    Chapter  Google Scholar 

  64. Nashed, M.Z., Chen, X.: Convergence of Newton-like methods for singular operator equations using outer inverses. Numer. Math. 66, 235–257 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  65. Niepage, D.: On the existence and approximation and approximate solution of discontinuous differential-algebraic systems. In: Griepentrog, E., Hanke, M., März, R. (eds.) Berlin Seminar on Differential-Algebraic Equations, vol. 92-1, pp. 179–194 (1992)

    Google Scholar 

  66. Niepage, H.-D.: A convergence and existence result for differential-algebraic inclusions. Numer. Funct. Anal. Optimiz. 9, 1221–1250 (1987–1988)

    Google Scholar 

  67. Niepage, H.-D.: On the numerical solution of differential-algebraic equations with discontinuities. In: Strehmel, K. (ed.) Numerical Treatment of Differential Equations. Teubner, Leipzig (1990)

    Google Scholar 

  68. Nittka, R., Sauter, M.: Sobolev gradients for differential algebraic equations. Electron. J. Differ. Equ. 2008(42), 1–31 (2008)

    MathSciNet  Google Scholar 

  69. Petry, T.: Realisierung des Newton-Kantorovich-Verfahrens für nichtlineare Algebro-Differentialgleichungen mittels Abramov-Transfer. Ph.D. thesis, Humboldt-Universität zu Berlin, Juni 1998. Logos, Berlin (1998)

    Google Scholar 

  70. Rabier, P.J., Rheinboldt, W.C.: Theoretical and numerical analysis of differential-algebraic equations. In: Ciarlet, P.G. et al. (eds.) Handbook of Numerical Analysis, Techniques of Scientific Computing (Part 4), vol. VIII, pp. 183–540. North Holland/Elsevier, Amsterdam (2002)

    Google Scholar 

  71. Reis, T.: Systems Theoretic Aspects of PDAEs and Applications to Electrical Circuits. Ph.D. thesis, Technische Universiät Kaiserslautern (2006)

    Google Scholar 

  72. Riaza, R.: Differential-Algebraic Systems. Analytical Aspects and Circuit Applications. World Scientific, River Edge (2008)

    Book  MATH  Google Scholar 

  73. Schumilina, I.: Charakterisierung der Algebro-Differentialgleichungen mit Traktabilitätsindex 3. Ph.D. thesis, Humboldt-Universität zu Berlin (2004)

    Google Scholar 

  74. Schwarz, D.E.: Consistent initialization for index-2 differential algebraic equations and its application to circuit simulation. Ph.D. thesis, Mathemematisch-Naturwissenschaftliche Fakultät II, Humboldt-Universität zu Berlin, Juli (2000)

    Google Scholar 

  75. Seufer, I.: Generalized inverses of differential-algebraic equations and their discretization. Ph.D. thesis, Technische Universität Berlin (2006)

    Google Scholar 

  76. Tikhonov, A.N., Arsenin, V.Y.: Methods for the solution of ill-posed problems. Nauka, Moskva (1974, in Russian.)

    Google Scholar 

  77. Trenn, S.: Distributional Differential Algebraic Equations. Ph.D. thesis, TU Ilmenau (2009)

    Google Scholar 

  78. Vajnikko, G.M., Veretennikov, A.Y.: Iteratsionnye protsedury v nekorrektnykh zadachakh. Nauka, Moskva (1986, in Russian)

    Google Scholar 

  79. Voigtmann, S.: General Linear Methods for Integrated Circiut Design. Ph.D. thesis, Humboldt-Universität zu Berlin, Juni 2006. Logos, Berlin (2006)

    Google Scholar 

  80. Weierstraß, K.: Gesammelte Werke, volume II, chapter Zur Theorie der bilinearen und quadratischen Formen, pp. 19–44. Akad. d. Wiss. Berlin (1868)

    Google Scholar 

  81. Wendt, W.: On a differential-algebraic inclusion model for LRS-networks. In: Griepentrog, E., Hanke, M., März, R. (eds.) Berlin Seminar on Differential-Algebraic Equations, vol. 92-1, pp. 195–218 (1992)

    Google Scholar 

  82. Yosida, K.: Functional Analysis, 6th edn. Springer, New York (1980)

    Book  MATH  Google Scholar 

  83. Zeidler, E.: Applied Functional Analysis. Applications to Mathematical Physics. Applied Mathematical Sciences, vol. 108. Springer, New York (1995)

    Google Scholar 

  84. Zeidler, E.: Applied Functional Analysis. Main Principles and Their Applications. Applied Mathematical Sciences, vol. 109. Springer, New York (1995)

    Google Scholar 

  85. Zhuk, S.M.: Closedness and normal solvability of an operator generated by a degenerate linear differential equation with variable coefficients. Nonlinear Oscillations 10(4), 469–486 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roswitha März .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

März, R. (2015). Differential-Algebraic Equations from a Functional-Analytic Viewpoint: A Survey. In: Ilchmann, A., Reis, T. (eds) Surveys in Differential-Algebraic Equations II. Differential-Algebraic Equations Forum. Springer, Cham. https://doi.org/10.1007/978-3-319-11050-9_4

Download citation

Publish with us

Policies and ethics