Skip to main content

Clinical and Microbiological Aspects of Biofilm-Associated Surgical Site Infections

  • Chapter
  • First Online:
Book cover Biofilm-based Healthcare-associated Infections

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 830))

Abstract

While microbial biofilms have been recognized as being ubiquitous in nature for the past 40 years, it has only been within the past 20 years that clinical practitioners have realized that biofilm play a significant role in both device-related and tissue-based infections. The global impact of surgical site infections (SSIs) is monumental and as many as 80 % of these infections may involve a microbial biofilm. Recent studies suggest that biofilm- producing organisms play a significant role in persistent skin and soft tissue wound infections in the postoperative surgical patient population. Biofilm, on an organizational level, allows bacteria to survive intrinsic and extrinsic defenses that would inactivate the dispersed (planktonic) bacteria. SSIs associated with biomedical implants are notoriously difficult to eradicate using antibiotic regimens that would typically be effective against the same bacteria growing under planktonic conditions. This biofilm-mediated phenomenon is characterized as antimicrobial recalcitrance, which is associated with the survival of a subset of cells including “persister” cells. The ideal method to manage a biofilm-mediated surgical site wound infection is to prevent it from occurring through rational use of antibiotic prophylaxis, adequate skin antisepsis prior to surgery and use of innovative in-situ irrigation procedures; together with antimicrobial suture technology in an effort to promote wound hygiene at the time of closure; once established, biofilm removal remains a significant clinical problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akers KS, Mende K, Cheatle K, Zera WC, Yu X, Beckius ML, Aggarwal D, Carlos PL, Sanchez CJ, Wenke JC, Weintrob AC, Tribble DR, Murray CK (2014) Biofilms and persistent wound infections in United States military trauma patients a case-control analysis. BMC Infect Dis 14:190. http://www.biomedcentral.com/1471-2334/14/190

  • Akiyama H, Ueda M, Kanwaki H, Tada J, Arata J (1997) Biofilm formation of Staphylococcus aureus strains isolated from impetigo and furuncle: role of fibrinogen and fibrin. J Dermatol Sci 16:2–10

    CAS  PubMed  Google Scholar 

  • Alavi MR, Stojadinovic A, Izadjoo MJ (2012) An overview of biofilm and its detection in clinical samples. J Wound Care 21:376–383

    CAS  PubMed  Google Scholar 

  • Allan N, Olson M, Nagel D, Martin R (2010) The impact of hydrosurgical debridement on wounds containing bacterial biofilms. Wound Repair Regen 18:A88

    Google Scholar 

  • American Society of Plastic Surgeon (2011) Plastic surgery procedural statistics. http://www.plasticsurgery.org.news-and-resources. Accessed 20 Jan 2013

  • Andriesson AE, Eberlein T (2006) Assessment of a wound cleansing solution in the treatment of problem wounds. Wounds 20:171–175

    Google Scholar 

  • Armstrong PA, Bandyk (2006) Management of infected aortic grafts by in-situ grafting. In: Pearce WH, Matsumura JS, Yao JST (eds) Trends in vascular surgery 2005. Greenwood Academic, Evanston, pp 473–48

    Google Scholar 

  • Attinger C, Wolcott R (2012) Clinically addressing biofilm in chronic wounds. Adv Wound Care 1:127–132

    Google Scholar 

  • Back DA, Scheuermann-Poley C, Willy C (2013) Recommendations on negative pressure wound therapy with instillation and antimicrobial solutions – when, where and how to use: what does the evidence show? Int Wound J 10:32–42

    PubMed  Google Scholar 

  • Bandyk DF, Black MR (2005) Infection in prosthetic vascular grafts. In: Rutherford RB, Johnson KW (eds) Vascular surgery, 6th edn. Elsevier Saunders, Philadelphia, pp 875–6894

    Google Scholar 

  • Barber KE, Werth BJ, McRoberts JP, Rybak MJ (2014) A novel approach utilizing biofilm time-kill curves to assess the bactericidal activity of ceftaroline combinations against biofilm-producing methicillin-resistant Staphylococcus aureus. Antimicrob Agent Chemother 58:2989–2992

    CAS  Google Scholar 

  • Barnes S, Spencer M, Graham D, Johnson HB (2014) Surgical wound irrigation: a call for evidence-based standardization of practice. Am J Infect Control 42:525–529

    PubMed  Google Scholar 

  • Bauer JJ, Harris MT, Kreel I, Gelernt IM (1999) Twelve-year experience with expanded polytetrafluorethylene in the repair of abdominal wall defects. Mt Sinai J Med 66:20–25

    CAS  PubMed  Google Scholar 

  • Bellon JM, Garcia-Carranza A, Garcia-Honduvilla N, Carrera-San Martin A, Bujan J (2004) Tissue integration and biomechanical behavior of contaminated experimental polypropylene and expanded polytetrafluoroethylene implants. Br J Surg 91:489–494

    CAS  PubMed  Google Scholar 

  • Bigger JW (1944) Treatment of staphylococcal infection with penicillin. Lancet 2:497–500

    Google Scholar 

  • Birolini C, de Miranda JS, Utiyama EM, Rasslan S (2014) A retrospective review and observation over a 16-year clinical experience on the surgical treatment of chronic mesh infection. What about replacing a synthetic mesh on the infected surgical field? Hernia Feb 6 [Epub ahead of print]

    Google Scholar 

  • Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, Madsen KG, Phipps R, Krogfelt K, Høiby N, Givskov M (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16:2–10

    PubMed  Google Scholar 

  • Bondurant CP, Jimenez DF (1995) Epidemiology of cerebrospinal fluid shunting. Pediatr Neurosurg 23:254–258

    CAS  PubMed  Google Scholar 

  • Braxton EE, Ehrlich GD, Hall-Stoodley L, Stoodley P, Veeh R, Fux C, Hu FZ, Quigley M, Post C (2005) Role of biofilms in neurological device-related infections. Neurosurg Rev 28:249–255

    PubMed  Google Scholar 

  • Cameron T (2004) Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. J Neurosurg Spine 100:24–257

    Google Scholar 

  • Caputo WJ, Beggs DJ, DeFede JL, Simm L, Dharma H (2008) A prospective randomized controlled clinical trial comparing hydrosurgery debridement with conventional surgical debridement in lower extremity ulcers. Int Wound J 5:288–294

    PubMed  Google Scholar 

  • Cardinal M, Eisenbud DE, Armstrong DG, Zelen C, Driver V, Attinger C, Phillips T, Harding K (2009) Serial surgical debridement: a retrospective study on clinical outcomes in chronic lower extremity wounds. Wound Repair Regen 17:306–311

    PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2009) Ambulatory surgery in the United States, 2006, National Health Statistics Report, Number 11. http://www.cdc.gov/nchs/data/nhsr/nhsr011.pdf. Revised 4 September 2009

  • Centers for Disease Control and Prevention (2010) National hospital discharge survey: 2010 table, procedures by selected patient characteristics – number by procedure category and age. http://www.cdc.gov/nchs/fastats/insurg.htm. Accessed 27 Aug 2013

  • Cho KH, Caparon MG (2005) Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes. Mol Microbiol 57:1545–1556

    CAS  PubMed  Google Scholar 

  • Costerton JW, Stewart PS (2001) Battling biofilms. Sci Am 285:74–81

    CAS  PubMed  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    CAS  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persisting infections. Science 284:1318–1322

    CAS  PubMed  Google Scholar 

  • Cutting KF, Harding KG (1994) Criteria for identifying wound infection. J Wound Care 3:198–201

    Google Scholar 

  • Davidson CA, Lowe CR (2004) Optimization of polymeric surface pre-treatment to prevent bacterial biofilm formation for use in microfluidics. J Mol Recognit 25:2029–2037

    Google Scholar 

  • Davis LE, Cook G, Costerton JW (2002) Biofilm on ventriculoperitoneal shunt tubing as a cause of treatment failure in coccidioidal meningitis. Emerg Infect Dis 8:376–379

    PubMed Central  PubMed  Google Scholar 

  • Davis SC, Ricotti C, Cazzaniga, Welsh E, Eaglstein WH, Mertz PM (2008) Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen 16:23–29

    PubMed  Google Scholar 

  • De Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn BB (2009) Surgical site infection: incidence and impact on hospital utilization and treatment costs. Am J Infect Control 37:387–397

    PubMed  Google Scholar 

  • Del Pozo JL, Patel R (2009) Clinical practice. Infection associated with prosthetic joints. N Eng J Med 361:787–794

    Google Scholar 

  • Dissemond J, Assadian O, Gerber V, Kingsley A, Kramer A, Leaper DJ, Mosti G, Piatkowski DE, Grzymala A, Riepe G, Risse A, Romanelli M, Strohal R, Traber J, Vasel-Biergans A, Wild T, Eberlein T (2011) Classification of wounds at risk and their antimicrobial treatment with polyhexanide: a practice-oriented expert recommendation. Skin Pharmacol Physiol 24:245–255

    CAS  PubMed  Google Scholar 

  • Donlan RM (2001a) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392

    CAS  PubMed  Google Scholar 

  • Donlan RM (2001b) Role of biofilms in antimicrobial resistance. ASAIO J 46:547–552

    Google Scholar 

  • Dowd SE, Wolcott RD, Sun Y, McKeehan T, Smith E, Rhoads D (2008) Polymicrobial nature of chronic diabetic foot ulcer infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS One 3:e3326

    PubMed Central  PubMed  Google Scholar 

  • Dowsett C (2013) Biofilms: a practice-based approach to identification and treatment. Wounds UK 9:68–92

    Google Scholar 

  • Edds EM, Bergamini TM, Brittian KR, Kenneth R (2000) Bacterial components inhibit fibroblast proliferation in vivo. ASAIO J 46:33–37

    CAS  PubMed  Google Scholar 

  • Edmiston CE (1993) Prosthetic device infections in surgery. In: Nichols RL, Nyhus LM (eds) Update surgical sepsis. JB Lippincott, Philadelphia, pp 444–468

    Google Scholar 

  • Edmiston CE, Seabrook GR, Cambria RA, Brown KR, Sommers JR, Krepel CJ, Wilson PJ, Sinski S, Towne JB (2005) Molecular epidemiology of microbial contamination in the operating room environment: is there a risk for infection? Surgery 138:572–588

    Google Scholar 

  • Edmiston CE, Seabrook GR, Goheen MP, Krepel CJ, Johnson CP, Lewis BD, Brown KR, Towne JB (2006a) Bacterial adherence to surgical sutures: can antimicrobial-coated sutures reduce the risk of microbial contamination? J Am Coll Surg 203:481–489

    PubMed  Google Scholar 

  • Edmiston CE, Goheen MP, Seabrook GR, Johnson CP, Lewis BD, Brown KR, Towne JB (2006b) Impact of selective antimicrobial agents on staphylococcal adherence to biomedical devices. Am J Surg 192:344–354

    CAS  PubMed  Google Scholar 

  • Edmiston CE, Krepel CJ, Marks RM, Rossi PJ, Sanger J, Goldblatt M, Graham MB, Rotherburger S, Collier J, Seabrook GR (2013a) Microbiology of explanted sutures segments from infected and non-infected surgical cases. J Clin Microbiol 51:417–421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edmiston CE, Kiernan M, Leaper DJ (2013b) The Ying and Yang of pre-operative screening for methicillin sensitive Staphylococcus aureus (MSSA): would the extra effort and cost of decolonization reduce surgical site infections? Wound Med 1:7–12

    Google Scholar 

  • Edmiston CE, Daoud F, Leaper DJ (2013c) Is there an evidence-based argument for embracing an antimicrobial (triclosan)-coated suture technology to reduce the risk for surgical-site infections?: a meta-analysis. Surgery 154:89–100

    PubMed  Google Scholar 

  • Edmiston CE, Bruden B, Rucinski M, Henen C, Graham MB, Lewis BL (2013d) Reducing the risk of surgical site infections: does chlorhexidine gluconate provide a risk reduction benefit? Am J Infect Control 41:S49–S55

    PubMed  Google Scholar 

  • Edward R, Harding KG (2004) Bacteria and wound healing. Curr Opin Infect Dis 17:91–96

    Google Scholar 

  • Elek SD, Cohen PE (1957) The virulence of S. pyogenes for man: a study of the problems of wound infection. Br J Exp Pathol 38:573–586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elgharaby H, Mann E, Awad H, Ganesh K, Ghatak PD, Gordillo G, Sai-Sudhakar CB, Sashwati R, Wozniak DJ (2013) First evidence of sternal wound biofilm following cardiac surgery. PLoS One 8:e70360

    Google Scholar 

  • Engelsman AF, van der Mei HC, Ploeg RJ, Busscher HJ (2007) The phenomenon of infection with abdominal wall reconstruction. Biomaterials 28:2314–2327

    CAS  PubMed  Google Scholar 

  • Engelsman AF, van der Mei HC, Busscher HJ, Ploeg RJ (2008) Morphological aspects of surgical mesh as a risk factor for bacterial colonization. Br J Surg 95:1051–1059

    CAS  PubMed  Google Scholar 

  • Evans LV, Lewandowski Z (2000) Structure and function of biofilms. In: Evans LV (ed) Biofilms: recent advances in their study and control. Harwood Academic, Amsterdam, pp 1–17

    Google Scholar 

  • Falanga V, Brem H, Ennis WJ, Wolcott R, Gould LJ, Ayello EA (2008) Maintenance debridement in the treatment of difficult-to-heal chronic wounds. Ostomy Wound Manag S2–S13

    Google Scholar 

  • Fernandes A, Dias M (2013) The microbiological profile of infected prosthetic implants with an emphasis on which organisms form biofilms. J Clin Diagn Res 7:219–223

    PubMed Central  PubMed  Google Scholar 

  • Frei E, Hodgkiss-Harlow K, Rossi PJ, Edmiston CE, Bandyk DF (2011) Microbial pathogenesis of bacterial biofilms: a causative factor of vascular surgical site infection. Vasc Endovasc Surg 45:688–696

    Google Scholar 

  • Gardner SE, Frantz RA, Doebbeling BN (2001) The validity of the clinical signs and symptoms used to identify localized chronic wound infection. Wound Repair Regen 9:178–186

    CAS  PubMed  Google Scholar 

  • Gilbert P, McBain AJ (2001) Biofilms: their impact on health and their recalcitrance toward biocides. Am J Infect Control 29:252–255

    CAS  PubMed  Google Scholar 

  • Gilbert P, Maira-Litran T, McBain AJ, Rikard AH, Whyte FW (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:202–256

    PubMed  Google Scholar 

  • Griffin JW, Guillot SJ, Redick JA, Browne JA (2012) Removed antibiotic-impregnated cement spacers in two-stage revision joint arthroplasty do not show biofilm formation in vivo. J Arthroplasty 27:1796–1799

    PubMed  Google Scholar 

  • Gunnison JB, Fraher MA, Jawetz E (1964) Persistence of Staphylococcus aureus in penicillin in vitro. J Gen Microbiol 35:335–349

    CAS  PubMed  Google Scholar 

  • Hall MR, McGillicuddy E, Kaplan LJ (2014) Biofilm: basic principles, pathophysiology, and implications for clinicians. Surg Infect 15:1–7

    Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms from the natural environment to infectious disease. Nat Rev Microbiol 2:95–108

    CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Stoodley P, Kathju S, Høiby N, Moser C, Costerton JW, Moter A, Bjarnsholt T (2012) Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol 65:127–145

    CAS  PubMed  Google Scholar 

  • Hamy A, Pessaux P, Mucci-Hennekinne S, Radriamananjo A, Regenet N, Arnaud JP (2003) Surgical treatment of large incisional hernias by intraperitoneal Dacron mesh and an aponeurotic graft. J Am Coll Surg 196:531–534

    PubMed  Google Scholar 

  • Harrison-Balestra C, Cazzaniga AL, Davis SC, Mertz PM (2003) A wound-isolated Pseudomonas aeruginosa grows a biofilm in vitro within 10 hours and is visualized by light microscopy. Dermatol Surg 29:631–635

    PubMed  Google Scholar 

  • Hart JP, Eginton MT, Brown KR, Seabrook GR, Lewis BD, Edmiston CE, Towne JB, Cambria RA (2005) Operative strategies in aortic graft infections: is complete graft excision always necessary? Ann Vasc Surg 19:154–160

    PubMed  Google Scholar 

  • Hasanadka R, Seabrook GR, Edmiston CE (2007) Vascular graft infections. In: Rello J, Vanes J, Kollef M (eds) Critical care infectious diseases. Kluwer Academic, Boston, pp 555–566

    Google Scholar 

  • Henry-Stanley MJ, Hess DJ, Barnes AMT, Dunny GM, Wells CL (2010) Bacterial contamination of surgical suture resembles a biofilm. Surg Infect 11:433–439

    Google Scholar 

  • Herwaldt LA, Cullen JJ, Scholz D, French P, Zimmerman MB, Pfaller MA, Wenzel RP, Pearl TM (2006) A prospective study of outcome, healthcare resource utilization, and cost associated with postoperative nosocomial infections. Infect Control Hosp Epidemiol 27:1291–1298

    PubMed  Google Scholar 

  • Hoiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PO, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65

    PubMed Central  PubMed  Google Scholar 

  • Holland SP, Pulido JS, Miller D, Ellis B, Alfonso E, Scott M, Costerton JW (1991) Biofilm and scleral buckle-associated infections: a mechanism for persistence. Ophthalmology 98:933–938

    CAS  PubMed  Google Scholar 

  • Hoyle B, Corsterton JW (1991) Bacterial resistance to antibiotics: the role of biofilm. Prog Drug Res 37:91–105

    CAS  PubMed  Google Scholar 

  • Jacombs A, Tahir S, Hu H, Deva AK, Almatroudi A, Fick WL, Bradshaw DA, Vickery K (2014) In vitro and in vivo investigation of the influence if implant surface on the formation of bacterial biofilm in mammary implants. Plast Reconstr Surg 133:e471–e2475

    Google Scholar 

  • James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16:37–44

    PubMed  Google Scholar 

  • Jayaraman R (2008) Bacterial persistence: some new insights into an old phenomenon. J Biosci 33:795–805

    CAS  PubMed  Google Scholar 

  • Jenson PO, Givskov M, Bjarnsholt T, Moser C (2011) The immune system vs. Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol 59:292–305

    Google Scholar 

  • Kaehn K, Eberlein T (2009) In vitro test for comparing the efficacy of wound rinsing solutions. Br J Nurs 18:S4–S10

    PubMed  Google Scholar 

  • Kathju S, Nistico L, Hall-Stoodley L, Post JC, Ehrlich GD, Stoodley P (2009) Chronic surgical site infection due to suture-associated polymicrobial biofilm. Surg Infect 10:457–461

    Google Scholar 

  • Kathju S, Lask LA, Nistico L, Colella JJ, Stoodley P (2010) Cutaneous fistula from gastric remnant resulting from chronic suture-associated biofilm infection. Obes Surg 20:251–256

    PubMed  Google Scholar 

  • Kessler B, Sendi P, Graber P, Knupp M, Zwicky L, Hintermann B, Zimmerli W (2012) Risk factors for periprosthetic ankle joint infection: a case control study. J Bone Joint Surg Am 94:1871–1876

    PubMed  Google Scholar 

  • Kim DH, Spencer M, Davidson SM, Li L, Shaw JD, Gulczynski D, Hunter DJ, Martha JF, Miley GB, Parazin SJ, Dejoie P, Richmond JC (2010) Institutional prescreening for detection and eradication of methicillin-resistant Staphylococcus aureus in patients undergoing elective orthopaedic surgery. J Bone Joint Surg 92:1820–1826

    PubMed  Google Scholar 

  • Kingsley A (2001) A pro-active approach to wound infection. Nurs Stand 15:50–58

    CAS  PubMed  Google Scholar 

  • Laffer RR, Graber P, Ochsner PE, Zimmerli W (2006) Outcome of prosthetic knee-associated infection: evaluation of 40 consecutive episodes at a single center. Clin Microbiol Infect 15:433–443

    Google Scholar 

  • Leaper D (2013) Silver dressings: their role in treatment of acute infected wounds. In: Willy C (ed) Antiseptics in surgery-update 2013. Lindqvist Book Publishing, Berlin, pp 151–154

    Google Scholar 

  • Leaper DJ, Meaume S, Apelqvist J, Teot L, Gottrup F (2011) Debridement methods of non-viable tissue in wounds. In: Farrar D (ed) Advanced wound repair therapies. Woodhead Publishers, Cambridge

    Google Scholar 

  • Leaper DJ, Ayello EA, Carville K, Fletcher J, Keast D, Lindholm C, Martinez JLL, Mavanini SD, McBain A, Moore Z, Opasanon S, Pina E (2012a) Appropriate use of silver dressings in wounds. International Consensus Document, London

    Google Scholar 

  • Leaper DJ, Schultz G, Carville K, Fletcher F, Swanson T, Drake R (2012b) Extending the TIME concept: what have we learned in the past 10 years? Int Wound J 9:1–19

    PubMed  Google Scholar 

  • Leber GE, Garb JL, Alexander AI, Reed WP (1998) Long-term complications associated with prosthetic repair of incisional hernias. Arch Surg 133:378–382

    CAS  PubMed  Google Scholar 

  • Leid JG, Wilson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK (2005) The exopolysaccharide alginate protects biofilm from IFN-gamma-mediated macrophage killing. J Immunol 175:7512–7518

    CAS  PubMed  Google Scholar 

  • Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES (2002) Ventriculostomy-related infections; a critical review of the literature. Neurosurgery 51:170–181

    PubMed  Google Scholar 

  • Luijendiik RW, Hop WCJ, van der Tol MP, de Lange DCD, Braaksma MMJ, Ijzermans JNM, Boelhouwer RU, de Vries BC, Salu MK, Wereldsma JC, Bruijninckx CM, Jeekel J (2000) A comparison of suture repair and mesh repair for incisional hernia. N Engl J Med 343:392–398

    Google Scholar 

  • Machairas A, Misiakos EP, Liakakos T, Karatzas G (2004) Incisional hernioplasty with extraperitoneal on-lay polyester mesh. Ann Surg 70:726–729

    Google Scholar 

  • Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    CAS  PubMed  Google Scholar 

  • Massie JB, Heller JG, Abitbol JJ, McPherson D, Garfin SR (1992) Postoperative posterior spinal wound infections. Clin Orthop 284:99–108

    PubMed  Google Scholar 

  • Mauermann WJ, Sampathkumar P, Thompson RL (2008) Sternal wound infections. Best Pract Clin Anesthesiol 22:423–436

    Google Scholar 

  • Meier-Davis S (2006) Host response to biofilms, foreign implants and devices. In: Pace JL, Mark E, Rupp Roger GF (eds) Biofilms, infection and antimicrobial therapy. Taylor & Francis Group, Boca Raton, pp 315–317

    Google Scholar 

  • Ming X, Nichols M, Rothenburger S (2007) In-vivo antibacterial efficacy of Monocryl Plus® antibacterial (poliglecaprone 25 with triclosan) suture. Surg Infect (Larchmt) 8:1–5

    Google Scholar 

  • Mosti G, Iabichella ML, Picerni P, Magliaro A, Mattaliano V (2005) The debridement of hard to heal leg ulcers by means of a new device based on Fluid jet technology. Int Wound J 2:307–314

    PubMed  Google Scholar 

  • Nahabedian MY, Tsangaris T, Momen B, Manson PN (2003) Infectious complications following breast reconstruction with expanders and implants. Plast Reconstr Surg 112:467–476

    PubMed  Google Scholar 

  • National Institute of Health (2002) Research on microbial biofilms: PA Number: PA-03-047. http://grants.nih.gov/grants/guide/pa-files/PA-03-047.html

  • National Institute for Health and Clinical Excellence (2013) NICE medical technology scope: Debrisoft for the debridement of acute and chronic wounds. Available at: www.nice.org.uk/nicemedia/live/14185/64407/64407.pdf

  • Nemoto K, Hirota K, Ono T, Murakami K, Nagao D, Miyake Y (2000) Effect of varidase (streptokinase) on biofilm formed by Staphylococcus aureus. Chemotherapy 46:111–115

    CAS  PubMed  Google Scholar 

  • Neto A, Lozano M, Moro MT, Keller J, Carralafuenta C (2002) Determinants of wound infection after surgery for breast cancer. Zentralbl Gynakol 124:429–433

    Google Scholar 

  • Netscher DT (2004) Subclinical infection as a possible cause of significant breast capsules. Plast Reconstr Surg 113:2229–2230

    PubMed  Google Scholar 

  • Olsen MA, Chu-Ongsakul S, Brandt KE, Dietz JR, Mayfield J, Fraser VJ (2008) Hospital-associated cost due to surgical site infection after breast surgery. Arch Surg 143:53–56

    PubMed  Google Scholar 

  • Otto M (2008) Staphylococcal biofilm. Curr Top Microbiol Immunol 322:207–228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Owen S, Ramraj V, Wallop J (2010) The cardiac surgery advance practice group: a case study of APN and PA collaborative practice. J Nurs Pract 6:371–374

    Google Scholar 

  • Pandey R, Berendt AR, Athanasou NA (2000) Histological and microbiological findings in non-infected and infected revision arthroplasty tissue. The OSIRIS Collaborative Study Group, Oxford Skeletal Infection Research and Intervention Service. Arch Orthop Trauma Surg 120:570–574

    CAS  PubMed  Google Scholar 

  • Parsa K, Schaudinn C, Gorur A, Sedghizadeh PP, Johnson T, Tse DT, Costerton JW (2010) Demonstration of bacterial biofilms in culture-negative silicone stent and jones tubes. Ophthal Plast Reconstr Surg 26:426–430

    PubMed  Google Scholar 

  • Parsek MR, Greenberg EP (2005) Sociomicrobiology – the connection between quorum sensing and biofilms. Trends Microbiol 13:27–33

    CAS  PubMed  Google Scholar 

  • Percival SL (2004) Biofilms and their potential role in wound healing. Wound 16:234–240

    Google Scholar 

  • Percival SL (2011) Biofilms and their management: form concept to clinical reality. J Wound Care 20:220–226

    Google Scholar 

  • Percival SL, Thomas JG, Williams DW (2010) Biofilms and bacterial imbalances in chronic wounds: anti-Koch. Int Wound J 7:169–175

    PubMed  Google Scholar 

  • Percival SL, Hill KE, Williams DW, Hooper SJ, Thomas DW, Costerton JW (2012) A review of the scientific evidence for biofilms in wounds. Wound Repair Regen 20:647–657

    PubMed  Google Scholar 

  • Phillips PL, Wolcott RD, Fletcher J, Schultz GS (2010a) Biofilms made easy. Wounds Int 1:1–6

    Google Scholar 

  • Phillips PL, Yang Q, Sampson E, Schultz G (2010b) Effects of antimicrobial agents on an in vitro biofilm model of skin wounds. Adv Wound Care 1:299–304

    Google Scholar 

  • Raju DR, Jindrak K, Weiner M, Enquist IF (1977) A study of the critical bacterial inoculums to cause a stimulus to wound healing. Surg Gynecol Obstet 144:347–350

    CAS  PubMed  Google Scholar 

  • Ray JM, Triplett G (2011) What is the role of biofilms in severe head and neck infections? Oral Maxillofac Surg Clin North Am 23:497–505

    PubMed  Google Scholar 

  • Reed D, Kemmerly SA (2009) Infection control and prevention: a review of hospital-acquired infections and the economic implications. Ochsner J 9:27–31

    PubMed Central  PubMed  Google Scholar 

  • Rhoads DD, Wolcott RD, Percival SL (2008) Biofilms in wounds management strategies. J Wound Care 17:502–508

    CAS  PubMed  Google Scholar 

  • Rieger UM, Kalbermatten DF, Haug M, Frey HP, Pico R, Frei R, Pierer G, Luscher NJ, Trampuz A (2013) Bacterial biofilms and capsular contracture in patients with breast implants. Br J Surg 100:768–774

    CAS  PubMed  Google Scholar 

  • Romling U, Balsalobre C (2012) Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 272:541–561

    CAS  PubMed  Google Scholar 

  • Rothenburger S, Spangler D, Bhende S, Burkley D (2002) In-vitro antimicrobial evaluation of coated Vicryl Plus antibacterial suture (coated polyglactin 910 with triclosan) using zone of inhibition assay. Surg Infect 3:S79–S87

    Google Scholar 

  • Samini DB, Bielory BP, Miller D, Johnson TE (2013) Microbiologic trends and biofilm growth on explanted periorbital biomaterials: a 30-year review. Opthal Plast Reconstr Surg 29:376–381

    Google Scholar 

  • Sanchez CJ, Mende K, Beckius ML, Akers KS, Romano DR, Wenke JC, Murray CK (2013) Biofilm formation by clinical isolates and the implication in chronic infections. BMC Infect Dis 13:47. http://www.biomedcentral.com/1571-2334/13/47

  • Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scott NW, McCormack K, Graham P, Go PM, Ross SJ, Grant AM (2002) Open mesh versus non-mesh repair for femoral and inguinal hernia. Cochrane Database Syst Rev CD002197

    Google Scholar 

  • Seaton RA, Malizos KN, Viale P, Gargalianos-Kakolyris P, Santantonio T, Petrelli E, Pathan R, Heep M, Chaves R (2013) Daptomycin use in patients with osteomyelitis: a preliminary report from the EU-COREsm database. J Antimicrob Chemother 68:1642–1649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shepard J, Ward W, Milstone A, Carlson T, Frederick J, Hadhazy E, Perl T (2013) Financial impact of surgical site infections on hospital: the hospital management perspective. JAMA Surg. doi:10.1001/jamasurg.2013.2246

    PubMed  Google Scholar 

  • Sibbald RG, Leaper DJ, Queen D (2011) Iodine made easy. Wounds Int 2:s1–s6

    Google Scholar 

  • Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555

    CAS  PubMed  Google Scholar 

  • Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa has similar resistance to killing by antimicrobial. J Bacteriol 183:6746–6751

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steckelberg JM, Osmom DR (2000) In: Waldvogel FA (ed) Prosthetic joint infection: infections associated with indwelling medical devices, 3rd edn. ASM Press, Washington, DC, pp 173–205

    Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    CAS  PubMed  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Review. Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    CAS  PubMed  Google Scholar 

  • Subramani K, Jung RE, Molenberg A, Hammerle CH (2009) Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants 24:616–626

    PubMed  Google Scholar 

  • Sugita J, Yokoi N, Fullwood NJ, Quantock AJ, Takada Y, Nakamura Y, Kinoshita S (2001) The detection of bacterial biofilms in punctual plug holes. Cornea 20:362–365

    CAS  PubMed  Google Scholar 

  • Sun Y, Dowd SE, Smith E, Rhoads DD, Walcott RD (2008) In vitro multispecies Lubbock chronic wound biofilm model. Wound Repair Regen 16:805–813

    PubMed  Google Scholar 

  • Tran CL, Langer S, Broderick-Villa G, DiFronzo LA (2002) Does reoperation predispose to postoperative wound infection in women undergoing operation for breast cancer? Am Surg 69:852–856

    Google Scholar 

  • Tsoi B, Ziolkowoski NI, Thoma A, Campbell K, O’Reilly D, Goeree R (2014) Safety of tissue expander/implant versus autologous abdominal tissue breast reconstruction in postmastectomy breast cancer patients: a systematic review and meta-analysis. Plast Reconstr Surg 133:234–249

    CAS  PubMed  Google Scholar 

  • Umemura A, Jaggi JL, Hurthi HI, Siderowf AD, Colcher A, Stern MB, Baltuch GH (2003) Deep brain stimulation for movement disorder: morbidity and mortality in 109 patients. J Neurosurg 98:779–784

    PubMed  Google Scholar 

  • Vandeweyer E, Deraemaecker R, Nogaret JM, Hertens D (2003) Immediate breast reconstruction with implants and adjuvant chemotherapy: a good option? Acta Chir Belg 103:98–101

    CAS  PubMed  Google Scholar 

  • Vanwijck R, Kaba L, Boland S, Gonzales y Azero M, Delange A, Tourbach S (2010) Immediate skin grafting of sub-acute and chronic wounds debrided by hydrosurgery. J Plast Reconstr Aesthet Surg 63:544–549

    CAS  PubMed  Google Scholar 

  • Varma S, Ferguson HC, Breen DV, Lumb WV (1974) Comparison of seven suture materials in infected wounds: an experimental study. J Surg Res 17:165–170

    CAS  PubMed  Google Scholar 

  • Walker TS, Tomlin KL, Woethern GS, Poch KR, Lieber JG, Saavedra MT, Fessler MB, Malcolm KC, Vasil ML, Nick JA (2005) Enhanced Pseudomonas biofilm development mediated by human neutrophils. Infect Immun 73:3693–3701

    CAS  PubMed Central  PubMed  Google Scholar 

  • White W (2011) Sharp wound debridement in the management of recalcitrant, locally infected chronic venous leg ulcers: a narrative review. Wound Pract Res 19:222–228

    Google Scholar 

  • Williams DL, Costerton JW (2012) Using biofilms as initial inocula in animal models of biofilm-related infections. J Biomed Mater Res B Appl Biomater 100:1163–1169

    PubMed  Google Scholar 

  • Wolcott RD, Cox S (2013) More effective cell-based therapy through biofilm suppression. J Wound Care 22:26–31

    CAS  PubMed  Google Scholar 

  • Wolcott RD, Rhoads DD (2008) A study of biofilm-based wound management in subjects with critical limb ischemia. J Wound Care 17:145–155

    CAS  PubMed  Google Scholar 

  • Wolcott RD, Rhoads D, Dowd SE (2008) Biofilms and chronic wound inflammation. J Wound Care 17:333–341

    CAS  PubMed  Google Scholar 

  • Wolcott RD, Kennedy JP, Dowd SE (2009) Regular debridement is the main tool for maintaining a healthy wound bed in most chronic wounds. J Wound Care 18:54–56

    CAS  PubMed  Google Scholar 

  • Wolcott RD, Rhoads DD, Bennett ME, Wolcott BM, Gogokhia L, Costerton JW, Dowd SE (2010a) Chronic wounds and the medical biofilm paradigm. J Wound Care 19:45–53

    CAS  PubMed  Google Scholar 

  • Wolcott RD, Rumbaugh KP, Stewart PS, Dowd SE (2010b) Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window. J Wound Care 19:320–328

    CAS  PubMed  Google Scholar 

  • Wood HL, Holden SR, Bayston R (2001) Susceptibility of Staphylococcus epidermidis biofilm in CSF shunts to bacteriophage attack. Eur J Pediatr Surg 11:S56–S57

    PubMed  Google Scholar 

  • Zhao G, Usui ML, Lippmann SI, James GA, Stewart PS, Fleckman P, Olerud JE (2013) Biofilms and inflammation in chronic wounds. Adv Wound Care 2:389–399

    Google Scholar 

  • Zimmerli W, Moser C (2012) Pathogenesis and treatment concepts of orthopedic biofilm infections. FEMS Immunol Med Microbiol 65:158–168

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles E. Edmiston Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Edmiston, C.E., McBain, A.J., Roberts, C., Leaper, D. (2015). Clinical and Microbiological Aspects of Biofilm-Associated Surgical Site Infections. In: Donelli, G. (eds) Biofilm-based Healthcare-associated Infections. Advances in Experimental Medicine and Biology, vol 830. Springer, Cham. https://doi.org/10.1007/978-3-319-11038-7_3

Download citation

Publish with us

Policies and ethics