Skip to main content

Biofilm-Based Central Line-Associated Bloodstream Infections

  • Chapter
  • First Online:
Biofilm-based Healthcare-associated Infections

Abstract

Different types of central venous catheters (CVCs) have been used in clinical practice to improve the quality of life of chronically and critically ill patients. Unfortunately, indwelling devices are usually associated with microbial biofilms and eventually lead to catheter-related bloodstream infections (CLABSIs).

An estimated 250,000–400,000 CLABSIs occur every year in the United States, at a rate of 1.5 per 1,000 CVC days and a mortality rate of 12–25 %. The annual cost of caring for patients with CLABSIs ranges from 296 million to 2.3 billion dollars.

Biofilm formation occurs on biotic and abiotic surfaces in the clinical setting. Extensive studies have been conducted to understand biofilm formation, including different biofilm developmental stages, biofilm matrix compositions, quorum-sensing regulated biofilm formation, biofilm dispersal (and its clinical implications), and multi-species biofilms that are relevant to polymicrobial infections.

When microbes form a matured biofilm within human hosts through medical devices such as CVCs, the infection becomes resistant to antibiotic treatment and can develop into a chronic condition. For that reason, many techniques have been used to prevent the formation of biofilm by targeting different stages of biofilm maturation. Other methods have been used to diagnose and treat established cases of CLABSI.

Catheter removal is the conventional management of catheter associated bacteremia; however, the procedure itself carries a relatively high risk of mechanical complications. Salvaging the catheter can help to minimize these complications.

In this article, we provide an overview of microbial biofilm formation; describe the involvement of various genetic determinants, adhesion proteins, organelles, mechanism(s) of biofilm formation, polymicrobial infections, and biofilm-associated infections on indwelling intravascular catheters; and describe the diagnosis, management, and prevention of catheter-related bloodstream infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adair CG, Gorman SP, Feron BM, Byers LM, Jones DS, Goldsmith CE, Moore JE, Kerr JR, Curran MD, Hogg G, Webb CH, Mccarthy GJ, Milligan KR (1999) Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 25:1072–1076

    CAS  PubMed  Google Scholar 

  • Adam B, Baillie GS, Douglas LJ (2002) Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol 51:344–349

    PubMed  Google Scholar 

  • Agladze K, Wang X, Romeo T (2005) Spatial periodicity of Escherichia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. J Bacteriol 187:8237–8246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Al-Fattani MA, Douglas LJ (2006) Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55:999–1008

    CAS  PubMed  Google Scholar 

  • Alipour M, Suntres ZE, Omri A (2009) Importance of DNase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa. J Antimicrob Chemother 64:317–325

    CAS  PubMed  Google Scholar 

  • Allison DG, Ruiz B, SanJose C, Jaspe A, Gilbert P (1998) Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett 167:179–184

    CAS  PubMed  Google Scholar 

  • Anaissie E, Samonis G, Kontoyiannis D, Costerton J, Sabharwal U, Bodey G, Raad I (1995) Role of catheter colonization and infrequent hematogenous seeding in catheter-related infections. Eur J Clin Microbiol Infect Dis 14:134–137

    CAS  PubMed  Google Scholar 

  • Ardehali R, Shi L, Janatova J, Mohammad SF, Burns GL (2002) The effect of apo-transferrin on bacterial adhesion to biomaterials. Artif Organs 26:512–520

    CAS  PubMed  Google Scholar 

  • Bach A, Schmidt H, Bottiger B, Schreiber B, Bohrer H, Motsch J, Martin E, Sonntag HG (1996) Retention of antibacterial activity and bacterial colonization of antiseptic-bonded central venous catheters. J Antimicrob Chemother 37:315–322

    CAS  PubMed  Google Scholar 

  • Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102:11076–11081

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188:7344–7353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baumgartner JN, Cooper SL (1998) Influence of thrombus components in mediating Staphylococcus aureus adhesion to polyurethane surfaces. J Biomed Mater Res 40:660–670

    CAS  PubMed  Google Scholar 

  • Beckingsale TB, Page JE, Jennings A, Fawcett T (2011) Increased sodium and potassium concentrations lead to increased penicillin resistance and increased biofilm formation in Stapylococcus aureus. J Bone Joint Surg Br 93-B:319

    Google Scholar 

  • Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Betjes MG, Van Agteren M (2004) Prevention of dialysis catheter-related sepsis with a citrate-taurolidine-containing lock solution. Nephrol Dial Transplant 19:1546–1551

    CAS  PubMed  Google Scholar 

  • Bjornson HS, Colley R, Bower RH, Duty VP, Schwartz-Fulton JT, Fischer JE (1982) Association between microorganism growth at the catheter insertion site and colonization of the catheter in patients receiving total parenteral nutrition. Surgery 92:720–727

    CAS  PubMed  Google Scholar 

  • Bleyer AJ, Mason L, Russell G, Raad II, Sherertz RJ (2005) A randomized, controlled trial of a new vascular catheter flush solution (minocycline-EDTA) in temporary hemodialysis access. Infect Control Hosp Epidemiol 26:520–524

    PubMed  Google Scholar 

  • Boles BR, Horswill AR (2008) Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4:e1000052

    PubMed Central  PubMed  Google Scholar 

  • Bookstaver PB, Williamson JC, Tucker BK, Raad II, Sherertz RJ (2009) Activity of novel antibiotic lock solutions in a model against isolates of catheter-related bloodstream infections. Ann Pharmacother 43:210–219

    CAS  PubMed  Google Scholar 

  • Boyd A, Chakrabarty AM (1994) Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl Environ Microbiol 60:2355–2359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    CAS  PubMed  Google Scholar 

  • Brogden KA, Guthmiller JM, Taylor CE (2005) Human polymicrobial infections. Lancet 365:253–255

    PubMed  Google Scholar 

  • Cairo J, Hachem R, Rangaraj G, Granwehr B, Raad I (2011) Predictors of catheter-related gram-negative bacilli bacteraemia among cancer patients. Clin Microbiol Infect 17:1711–1716

    CAS  PubMed  Google Scholar 

  • Campos RP, Do Nascimento MM, Chula DC, Riella MC (2011) Minocycline-EDTA lock solution prevents catheter-related bacteremia in hemodialysis. J Am Soc Nephrol 22:1939–1945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casanova Vivas S (2014) Recommendations from CDC for the prevention of catheter-related infections (2013 update). Rev Enferm 37:28–33

    PubMed  Google Scholar 

  • Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6:17–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, Aberg V, Walker JN, Seed PC, Almqvist F, Chapman MR, Hultgren SJ (2009) Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 5:913–919

    CAS  PubMed Central  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2011) Vital signs: central line-associated blood stream infections – United States, 2001, 2008, and 2009. MMWR Morb Mortal Wkly Rep 60:243–248

    Google Scholar 

  • Chatzinikolaou I, Zipf TF, Hanna H, Umphrey J, Roberts WM, Sherertz R, Hachem R, Raad I (2003) Minocycline-ethylenediaminetetraacetate lock solution for the prevention of implantable port infections in children with cancer. Clin Infect Dis 36:116–119

    PubMed  Google Scholar 

  • Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A 101:5048–5052

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christner M, Franke GC, Schommer NN, Wendt U, Wegert K, Pehle P, Kroll G, Schulze C, Buck F, Mack D, Aepfelbacher M, Rohde H (2010) The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol 75:187–207

    CAS  PubMed  Google Scholar 

  • Cicalini S, Palmieri F, Noto P, Boumis E, Petrosillo N (2002) Diagnosis of intra vascular catheter-related infection. J Vasc Access 3:114–119

    CAS  PubMed  Google Scholar 

  • Cleri DJ, Corrado ML, Seligman SJ (1980) Quantitative culture of intravenous catheters and other intravascular inserts. J Infect Dis 141:781–786

    CAS  PubMed  Google Scholar 

  • Cobb DK, High KP, Sawyer RG, Sable CA, Adams RB, Lindley DA, Pruett TL, Schwenzer KJ, Farr BM (1992) A controlled trial of scheduled replacement of central venous and pulmonary-artery catheters. N Engl J Med 327:1062–1068

    CAS  PubMed  Google Scholar 

  • Cookson AL, Cooley WA, Woodward MJ (2002) The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces. Int J Med Microbiol 292:195–205

    CAS  PubMed  Google Scholar 

  • Costerton JW (1995) Overview of microbial biofilms. J Ind Microbiol 15:137–140

    CAS  PubMed  Google Scholar 

  • Costerton JW, Irvin RT, Cheng KJ (1981) The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 35:299–324

    CAS  PubMed  Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    CAS  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    CAS  PubMed  Google Scholar 

  • Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Danese PN, Pratt LA, Dove SL, Kolter R (2000a) The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol Microbiol 37:424–432

    CAS  PubMed  Google Scholar 

  • Danese PN, Pratt LA, Kolter R (2000b) Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182:3593–3596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Darouiche RO, Raad II, Heard SO, Thornby JI, Wenker OC, Gabrielli A, Berg J, Khardori N, Hanna H, Hachem R, Harris RL, Mayhall G (1999) A comparison of two antimicrobial-impregnated central venous catheters. Catheter Study Group. N Engl J Med 340:1–8

    CAS  PubMed  Google Scholar 

  • Darouiche RO, Berger DH, Khardori N, Robertson CS, Wall MJ Jr, Metzler MH, Shah S, Mansouri MD, Cerra-Stewart C, Versalovic J, Reardon MJ, Raad II (2005) Comparison of antimicrobial impregnation with tunneling of long-term central venous catheters: a randomized controlled trial. Ann Surg 242:193–200

    PubMed Central  PubMed  Google Scholar 

  • Das T, Sehar S, Koop L, Wong YK, Ahmed S, Siddiqui KS, Manefield M (2014) Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation. PLoS One 9:e91935

    PubMed Central  PubMed  Google Scholar 

  • Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies DG, Marques CN (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Decho AW (2010) Overview of biopolymer-induced mineralization: what goes on in biofilms? Ecol Eng 36:137–144

    Google Scholar 

  • Dickinson RB, Nagel JA, Mcdevitt D, Foster TJ, Proctor RA, Cooper SL (1995) Quantitative comparison of clumping factor- and coagulase-mediated Staphylococcus aureus adhesion to surface-bound fibrinogen under flow. Infect Immun 63:3143–3150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dickinson RB, Nagel JA, Proctor RA, Cooper SL (1997) Quantitative comparison of shear-dependent Staphylococcus aureus adhesion to three polyurethane ionomer analogs with distinct surface properties. J Biomed Mater Res 36:152–162

    CAS  PubMed  Google Scholar 

  • Dimick JB, Pelz RK, Consunji R, Swoboda SM, Hendrix CW, Lipsett PA (2001) Increased resource use associated with catheter-related bloodstream infection in the surgical intensive care unit. Arch Surg 136:229–234

    CAS  PubMed  Google Scholar 

  • Dogra GK, Herson H, Hutchison B, Irish AB, Heath CH, Golledge C, Luxton G, Moody H (2002) Prevention of tunneled hemodialysis catheter-related infections using catheter-restricted filling with gentamicin and citrate: a randomized controlled study. J Am Soc Nephrol 13:2133–2139

    CAS  PubMed  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    PubMed Central  PubMed  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Downes KJ, Metlay JP, Bell LM, Mcgowan KL, Elliott MR, Shah SS (2008) Polymicrobial bloodstream infections among children and adolescents with central venous catheters evaluated in ambulatory care. Clin Infect Dis 46:387–394

    PubMed  Google Scholar 

  • Dryden MS, Samson A, Ludlam HA, Wing AJ, Phillips I (1991) Infective complications associated with the use of the Quinton ‘Permcath’ for long-term central vascular access in haemodialysis. J Hosp Infect 19:257–262

    CAS  PubMed  Google Scholar 

  • Dunne WM Jr (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards JR, Peterson KD, Mu Y, Banerjee S, Allen-Bridson K, Morrell G, Dudeck MA, Pollock DA, Horan TC (2009) National Healthcare Safety Network (NHSN) report: data summary for 2006 through 2008, issued December 2009. Am J Infect Control 37:783–805

    PubMed  Google Scholar 

  • El-Azizi MA, Starks SE, Khardori N (2004) Interactions of Candida albicans with other Candida spp. and bacteria in the biofilms. J Appl Microbiol 96:1067–1073

    CAS  PubMed  Google Scholar 

  • Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112:1291–1299

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feely T, Copley A, Bleyer AJ (2007) Catheter lock solutions to prevent bloodstream infections in high-risk hemodialysis patients. Am J Nephrol 27:24–29

    CAS  PubMed  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  • Fujita S, Sumita S, Kawana S, Iwasaki H, Namiki A (1997) Two cases of anaphylactic shock induced by chlorhexidine. Masui 46:1118–1121

    CAS  PubMed  Google Scholar 

  • Geoghegan JA, Corrigan RM, Gruszka DT, Speziale P, O’Gara JP, Potts JR, Foster TJ (2010) Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J Bacteriol 192:5663–5673

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gjermansen M, Ragas P, Sternberg C, Molin S, Tolker-Nielsen T (2005) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol 7:894–906

    CAS  PubMed  Google Scholar 

  • Goetz AM, Wagener MM, Miller JM, Muder RR (1998) Risk of infection due to central venous catheters: effect of site of placement and catheter type. Infect Control Hosp Epidemiol 19:842–845

    CAS  PubMed  Google Scholar 

  • Gotz F (2002) Staphylococcus and biofilms. Mol Microbiol 43:1367–1378

    CAS  PubMed  Google Scholar 

  • Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Granger BL, Flenniken ML, Davis DA, Mitchell AP, Cutler JE (2005) Yeast wall protein 1 of Candida albicans. Microbiology 151:1631–1644

    CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    CAS  PubMed  Google Scholar 

  • Hancock LE, Perego M (2004) The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J Bacteriol 186:5629–5639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanna HA, Raad II, Hackett B, Wallace SK, Price KJ, Coyle DE, Parmley CL, MD Anderson Catheter Study Group (2003) Antibiotic-impregnated catheters associated with significant decrease in nosocomial and multidrug-resistant bacteremias in critically ill patients. Chest 124:1030–1038

    PubMed  Google Scholar 

  • Hanna H, Benjamin R, Chatzinikolaou I, Alakech B, Richardson D, Mansfield P, Dvorak T, Munsell MF, Darouiche R, Kantarjian H, Raad I (2004) Long-term silicone central venous catheters impregnated with minocycline and rifampin decrease rates of catheter-related bloodstream infection in cancer patients: a prospective randomized clinical trial. J Clin Oncol 22:3163–3171

    CAS  PubMed  Google Scholar 

  • Harriott MM, Noverr MC (2010) Ability of Candida albicans mutants to induce Staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation. Antimicrob Agents Chemother 54:3746–3755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hawser SP, Douglas LJ (1995) Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 39:2128–2131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herrmann M, Vaudaux PE, Pittet D, Auckenthaler R, Lew PD, Schumacher-Perdreau F, Peters G, Waldvogel FA (1988) Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis 158:693–701

    CAS  PubMed  Google Scholar 

  • Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    PubMed  Google Scholar 

  • Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36:309–332

    PubMed  Google Scholar 

  • Huang YH, Ferrieres L, Clarke DJ (2006) The role of the Rcs phosphorelay in Enterobacteriaceae. Res Microbiol 157:206–212

    CAS  PubMed  Google Scholar 

  • Hughes KA, Sutherland IW, Jones MV (1998) Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144(Pt 11):3039–3047

    CAS  PubMed  Google Scholar 

  • Hunt SM, Werner EM, Huang B, Hamilton MA, Stewart PS (2004) Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol 70:7418–7425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Isberg RR, Barnes P (2002) Dancing with the host; flow-dependent bacterial adhesion. Cell 110:1–4

    CAS  PubMed  Google Scholar 

  • Isles A, Maclusky I, Corey M, Gold R, Prober C, Fleming P, Levison H (1984) Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104:206–210

    CAS  PubMed  Google Scholar 

  • Izano EA, Amarante MA, Kher WB, Kaplan JB (2008) Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74:470–476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T (2002) Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184:290–301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jamal MA Jr, Jiang Y, Hachem R, Chaftari A-M, Raad II (2014) Prevention of transmission of multidrug-resistant organisms during catheter exchange using antimicrobial catheters. Antimicrob Agents Chemother 58:5291–5296

    CAS  PubMed  Google Scholar 

  • Kaplan JB (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89:205–218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katsikogianni M, Missirlis YF (2004) Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater 8:37–57

    CAS  PubMed  Google Scholar 

  • Kemp KD, Singh KV, Nallapareddy SR, Murray BE (2007) Relative contributions of Enterococcus faecalis OG1RF sortase-encoding genes, srtA and bps (srtC), to biofilm formation and a murine model of urinary tract infection. Infect Immun 75:5399–5404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khajanchi BK, Kozlova EV, Sha J, Popov VL, Chopra AK (2012) The two-component QseBC signalling system regulates in vitro and in vivo virulence of Aeromonas hydrophila. Microbiology 158:259–271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kierek K, Watnick PI (2003) The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2 +-dependent biofilm development in sea water. Proc Natl Acad Sci U S A 100:14357–14362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kinane DF, Riggio MP, Walker KF, Mackenzie D, Shearer B (2005) Bacteraemia following periodontal procedures. J Clin Periodontol 32:708–713

    PubMed  Google Scholar 

  • Kite P, Eastwood K, Sugden S, Percival SL (2004) Use of in vivo-generated biofilms from hemodialysis catheters to test the efficacy of a novel antimicrobial catheter lock for biofilm eradication in vitro. J Clin Microbiol 42:3073–3076

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klapper I, Rupp CJ, Cargo R, Purvedorj B, Stoodley P (2002) Viscoelastic fluid description of bacterial biofilm material properties. Biotechnol Bioeng 80:289–296

    CAS  PubMed  Google Scholar 

  • Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524

    CAS  PubMed  Google Scholar 

  • Kline KA, Dodson KW, Caparon MG, Hultgren SJ (2010) A tale of two pili: assembly and function of pili in bacteria. Trends Microbiol 18:224–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kong KF, Vuong C, Otto M (2006) Staphylococcus quorum sensing in biofilm formation and infection. Int J Med Microbiol 296:133–139

    CAS  PubMed  Google Scholar 

  • Kostakioti M, Hadjifrangiskou M, Pinkner JS, Hultgren SJ (2009) QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli. Mol Microbiol 73:1020–1031

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3:a010306

    PubMed Central  PubMed  Google Scholar 

  • Kristinsson KG, Burnett IA, Spencer RC (1989) Evaluation of three methods for culturing long intravascular catheters. J Hosp Infect 14:183–191

    CAS  PubMed  Google Scholar 

  • LASA I, PENADES JR (2006) Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157:99–107

    CAS  PubMed  Google Scholar 

  • Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175:7512–7518

    CAS  PubMed  Google Scholar 

  • Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li F, Palecek SP (2008) Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions. Microbiology 154:1193–1203

    CAS  PubMed  Google Scholar 

  • Linares J, Sitges-Serra A, Garau J, Perez JL, Martin R (1985) Pathogenesis of catheter sepsis: a prospective study with quantitative and semiquantitative cultures of catheter hub and segments. J Clin Microbiol 21:357–360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lyte M, Freestone PP, Neal CP, Olson BA, Haigh RD, Bayston R, Williams PH (2003) Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet 361:130–135

    CAS  PubMed  Google Scholar 

  • Maki DG, Stolz SM, Wheeler S, Mermel LA (1997) Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter. A randomized, controlled trial. Ann Intern Med 127:257–266

    CAS  PubMed  Google Scholar 

  • Maki DG, Kluger DM, Crnich CJ (2006) The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc 81:1159–1171

    PubMed  Google Scholar 

  • Ma L, Wang S, Wang D, Parsek MR, Wozniak DJ (2012) The roles of biofilm matrix polysaccharide Psl in mucoid Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol 65:377–380

    CAS  PubMed  Google Scholar 

  • Mann EE, Wozniak DJ (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 36:893–916

    CAS  PubMed  Google Scholar 

  • Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, Tsang LH, Smeltzer MS, Horswill AR, Bayles KW (2009) Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One 4:e5822

    PubMed Central  PubMed  Google Scholar 

  • Marks LR, Davidson BA, Knight PR, Hakansson AP (2013) Interkingdom signaling induces Streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease. MBio 4:e00438–13

    PubMed Central  PubMed  Google Scholar 

  • Mathoera RB, Kok DJ, Nijman RJ (2000) Bladder calculi in augmentation cystoplasty in children. Urology 56:482–487

    CAS  PubMed  Google Scholar 

  • Mcdevitt D, Nanavaty T, House-Pompeo K, Bell E, Turner N, Mcintire L, Foster T, Hook M (1997) Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen. Eur J Biochem 247:416–424

    CAS  PubMed  Google Scholar 

  • Mcgee DC, Gould MK (2003) Preventing complications of central venous catheterization. N Engl J Med 348:1123–1133

    PubMed  Google Scholar 

  • Mcintyre CW, Hulme LJ, Taal M, Fluck RJ (2004) Locking of tunneled hemodialysis catheters with gentamicin and heparin. Kidney Int 66:801–805

    PubMed  Google Scholar 

  • Mehall JR, Saltzman DA, Jackson RJ, Smith SD (2002) Fibrin sheath enhances central venous catheter infection. Crit Care Med 30:908–912

    PubMed  Google Scholar 

  • Menzies BE (2003) The role of fibronectin binding proteins in the pathogenesis of Staphylococcus aureus infections. Curr Opin Infect Dis 16:225–229

    CAS  PubMed  Google Scholar 

  • Mermel LA (2000) Prevention of intravascular catheter-related infections. Ann Intern Med 132:391–402

    CAS  PubMed  Google Scholar 

  • Mohamed JA, Huang DB (2007) Biofilm formation by enterococci. J Med Microbiol 56:1581–1588

    CAS  PubMed  Google Scholar 

  • Mohamed JA, Huang W, Nallapareddy SR, Teng F, Murray BE (2004) Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis. Infect Immun 72:3658–3663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mohamed JA, Teng F, Nallapareddy SR, Murray BE (2006) Pleiotrophic effects of 2 Enterococcus faecalis sagA-like genes, salA and salB, which encode proteins that are antigenic during human infection, on biofilm formation and binding to collagen type i and fibronectin. J Infect Dis 193:231–240

    CAS  PubMed  Google Scholar 

  • Morgan R, Kohn S, Hwang SH, Hassett DJ, Sauer K (2006) BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J Bacteriol 188:7335–7343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nallapareddy SR, Singh KV, Sillanpaa J, Garsin DA, Hook M, Erlandsen SL, Murray BE (2006) Endocarditis and biofilm-associated pili of Enterococcus faecalis. J Clin Invest 116:2799–2807

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nett J, Lincoln L, Marchillo K, Andes D (2007a) Beta -1,3 glucan as a test for central venous catheter biofilm infection. J Infect Dis 195:1705–1712

    CAS  PubMed  Google Scholar 

  • Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, Vanhandel M, Andes D (2007b) Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 51:510–520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ni Eidhin D, Perkins S, Francois P, Vaudaux P, Hook M, Foster TJ (1998) Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol 30:245–257

    CAS  PubMed  Google Scholar 

  • Nobile CJ, Fox EP, Hartooni N, Mitchell KF, Hnisz D, Andes DR, Kuchler K, Johnson AD (2014) A histone deacetylase complex mediates biofilm dispersal and drug resistance in Candida albicans. MBio 5:e01201–e01214

    PubMed Central  PubMed  Google Scholar 

  • O’Gara JP (2007) ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270:179–188

    PubMed  Google Scholar 

  • O’Grady NP, Alexander M, Dellinger EP, Gerberding JL, Heard SO, Maki DG, Masur H, Mccormick RD, Mermel LA, Pearson ML, Raad II, Randolph A, Weinstein RA (2002) Guidelines for the prevention of intravascular catheter-related infections. The Hospital Infection Control Practices Advisory Committee, Center for Disease Control and Prevention, U.S. Pediatrics 110:e51

    PubMed  Google Scholar 

  • O’Neill E, Pozzi C, Houston P, Smyth D, Humphreys H, Robinson DA, O’Gara JP (2007) Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J Clin Microbiol 45:1379–1388

    PubMed Central  PubMed  Google Scholar 

  • O’Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A, Foster TJ, O’Gara JP (2008) A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 190:3835–3850

    PubMed Central  PubMed  Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    PubMed  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    PubMed  Google Scholar 

  • Oda T, Hamasaki J, Kanda N, Mikami K (1997) Anaphylactic shock induced by an antiseptic-coated central venous [correction of nervous] catheter. Anesthesiology 87:1242–1244

    CAS  PubMed  Google Scholar 

  • Olson ME, Garvin KL, Fey PD, Rupp ME (2006) Adherence of Staphylococcus epidermidis to biomaterials is augmented by PIA. Clin Orthop Relat Res 451:21–24

    CAS  PubMed  Google Scholar 

  • Otto M (2014) Phenol-soluble modulins. Int J Med Microbiol 304:164–169

    CAS  PubMed  Google Scholar 

  • Pammi M, Liang R, Hicks J, Mistretta TA, Versalovic J (2013) Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans. BMC Microbiol 13:257

    PubMed Central  PubMed  Google Scholar 

  • Paredes J, Alonso-Arce M, Schmidt C, Valderas D, Sedano B, Legarda J, Arizti F, Gomez E, Aguinaga A, Del Pozo JL, Arana S (2014) Smart central venous port for early detection of bacterial biofilm related infections. Biomed Microdevices 16:365–374

    CAS  PubMed  Google Scholar 

  • Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701

    CAS  PubMed  Google Scholar 

  • Pastar I, Nusbaum AG, Gil J, Patel SB, Chen J, Valdes J, Stojadinovic O, Plano LR, Tomic-Canic M, Davis SC (2013) Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection. PLoS One 8:e56846

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patrauchan MA, Sarkisova S, Sauer K, Franklin MJ (2005) Calcium influences cellular and extracellular product formation during biofilm-associated growth of a marine Pseudoalteromonas sp. Microbiology 151:2885–2897

    CAS  PubMed  Google Scholar 

  • Patti JM, Allen BL, Mcgavin MJ, Hook M (1994) MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617

    CAS  PubMed  Google Scholar 

  • Pegues D, Axelrod P, Mcclarren C, Eisenberg BL, Hoffman JP, Ottery FD, Keidan RD, Boraas M, Weese J (1992) Comparison of infections in Hickman and implanted port catheters in adult solid tumor patients. J Surg Oncol 49:156–162

    CAS  PubMed  Google Scholar 

  • Percival SL, Kite P, Eastwood K, Murga R, Carr J, Arduino MJ, Donlan RM (2005) Tetrasodium EDTA as a novel central venous catheter lock solution against biofilm. Infect Control Hosp Epidemiol 26:515–519

    PubMed  Google Scholar 

  • Pereira AL, Silva TN, Gomes AC, Araujo AC, Giugliano LG (2010) Diarrhea-associated biofilm formed by enteroaggregative Escherichia coli and aggregative Citrobacter freundii: a consortium mediated by putative F pili. BMC Microbiol 10:57

    PubMed Central  PubMed  Google Scholar 

  • Periasamy S, Joo HS, Duong AC, Bach TH, Tan VY, Chatterjee SS, Cheung GY, Otto M (2012) How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci U S A 109:1281–1286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pittet D, Tarara D, Wenzel RP (1994) Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality. JAMA 271:1598–1601

    CAS  PubMed  Google Scholar 

  • Pompilio A, Scocchi M, Pomponio S, Guida F, Di Primio A, Fiscarelli E, Gennaro R, Di Bonaventura G (2011) Antibacterial and anti-biofilm effects of cathelicidin peptides against pathogens isolated from cystic fibrosis patients. Peptides 32:1807–1814

    CAS  PubMed  Google Scholar 

  • Potter A, Ceotto H, Giambiagi-Demarval M, Dos Santos KR, Nes IF, Bastos Mdo C (2009) The gene bap, involved in biofilm production, is present in Staphylococcus spp. strains from nosocomial infections. J Microbiol 47:319–326

    CAS  PubMed  Google Scholar 

  • Pronovost P, Needham D, Berenholtz S, Sinopoli D, Chu H, Cosgrove S, Sexton B, Hyzy R, Welsh R, Roth G, Bander J, Kepros J, Goeschel C (2006) An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 355:2725–2732

    CAS  PubMed  Google Scholar 

  • Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S, Qu D (2007) Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153:2083–2092

    CAS  PubMed  Google Scholar 

  • Qin Z, Yang L, Qu D, Molin S, Tolker-Nielsen T (2009) Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis. Microbiology 155:2148–2156

    CAS  PubMed  Google Scholar 

  • Raad I (1998) Intravascular-catheter-related infections. Lancet 351:893–898

    CAS  PubMed  Google Scholar 

  • Raad I, Bodey GP Sr (2011) Novel antimicrobial catheter lock solution: a new direction in which chelators replace heparin. Crit Care Med 39:875–876

    PubMed  Google Scholar 

  • Raad II, Hanna HA (2002) Intravascular catheter-related infections: new horizons and recent advances. Arch Intern Med 162:871–878

    CAS  PubMed  Google Scholar 

  • Raad I, Costerton W, Sabharwal U, Sacilowski M, Anaissie E, Bodey GP (1993) Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J Infect Dis 168:400–407

    CAS  PubMed  Google Scholar 

  • Raad I, Darouiche R, Hachem R, Mansouri M, Bodey GP (1996) The broad-spectrum activity and efficacy of catheters coated with minocycline and rifampin. J Infect Dis 173:418–424

    CAS  PubMed  Google Scholar 

  • Raad I, Darouiche R, Dupuis J, Abi-Said D, Gabrielli A, Hachem R, Wall M, Harris R, Jones J, Buzaid A, Robertson C, Shenaq S, Curling P, Burke T, Ericsson C (1997) Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections. A randomized, double-blind trial. The Texas Medical Center Catheter Study Group. Ann Intern Med 127:267–274

    CAS  PubMed  Google Scholar 

  • Raad I, Hachem R, Tcholakian RK, Sherertz R (2002) Efficacy of minocycline and EDTA lock solution in preventing catheter-related bacteremia, septic phlebitis, and endocarditis in rabbits. Antimicrob Agents Chemother 46:327–332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raad I, Chatzinikolaou I, Chaiban G, Hanna H, Hachem R, Dvorak T, Cook G, Costerton W (2003) In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces. Antimicrob Agents Chemother 47:3580–3585

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raad I, Hanna H, Dvorak T, Chaiban G, Hachem R (2007) Optimal antimicrobial catheter lock solution, using different combinations of minocycline, EDTA, and 25-percent ethanol, rapidly eradicates organisms embedded in biofilm. Antimicrob Agents Chemother 51:78–83

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raad II, Fang X, Keutgen XM, Jiang Y, Sherertz R, Hachem R (2008a) The role of chelators in preventing biofilm formation and catheter-related bloodstream infections. Curr Opin Infect Dis 21:385–392

    CAS  PubMed  Google Scholar 

  • Raad I, Reitzel R, Jiang Y, Chemaly RF, Dvorak T, Hachem R (2008b) Anti-adherence activity and antimicrobial durability of anti-infective-coated catheters against multidrug-resistant bacteria. J Antimicrob Chemother 62:746–750

    CAS  PubMed  Google Scholar 

  • Raad I, Mohamed JA, Reitzel RA, Jiang Y, Raad S, Al Shuaibi M, Chaftari AM, Hachem RY (2012) Improved antibiotic-impregnated catheters with extended-spectrum activity against resistant bacteria and fungi. Antimicrob Agents Chemother 56:935–941

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J (2009) Our current understanding of fungal biofilms. Crit Rev Microbiol 35:340–355

    CAS  PubMed  Google Scholar 

  • Rello J, Ochagavia A, Sabanes E, Roque M, Mariscal D, Reynaga E, Valles J (2000) Evaluation of outcome of intravenous catheter-related infections in critically ill patients. Am J Respir Crit Care Med 162:1027–1030

    CAS  PubMed  Google Scholar 

  • Rendueles O, Kaplan JB, Ghigo JM (2013) Antibiofilm polysaccharides. Environ Microbiol 15:334–346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rice SA, Mcdougald D, Kumar N, Kjelleberg S (2005) The use of quorum-sensing blockers as therapeutic agents for the control of biofilm-associated infections. Curr Opin Investig Drugs 6:178–184

    CAS  PubMed  Google Scholar 

  • Richards MJ, Edwards JR, Culver DH, Gaynes RP (1999) Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit Care Med 27:887–892

    CAS  PubMed  Google Scholar 

  • Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS (2003) Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 11:94–100

    CAS  PubMed  Google Scholar 

  • Riedel K, Hentzer M, Geisenberger O, Huber B, Steidle A, Wu H, Hoiby N, Givskov M, Molin S, Eberl L (2001) N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147:3249–3262

    CAS  PubMed  Google Scholar 

  • Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C, Wurster S, Scherpe S, Davies AP, Harris LG, Horstkotte MA, Knobloch JK, Ragunath C, Kaplan JB, Mack D (2007) Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 28:1711–1720

    CAS  PubMed  Google Scholar 

  • Rosenblatt J, Reitzel R, Dvorak T, Jiang Y, Hachem RY, Raad II (2013) Glyceryl trinitrate complements citrate and ethanol in a novel antimicrobial catheter lock solution to eradicate biofilm organisms. Antimicrob Agents Chemother 57:3555–3560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruesch S, Walder B, Tramer MR (2002) Complications of central venous catheters: internal jugular versus subclavian access – a systematic review. Crit Care Med 30:454–460

    PubMed  Google Scholar 

  • Rupp ME, Lisco SJ, Lipsett PA, Perl TM, Keating K, Civetta JM, Mermel LA, Lee D, Dellinger EP, Donahoe M, Giles D, Pfaller MA, Maki DG, Sherertz R (2005) Effect of a second-generation venous catheter impregnated with chlorhexidine and silver sulfadiazine on central catheter-related infections: a randomized, controlled trial. Ann Intern Med 143:570–580

    CAS  PubMed  Google Scholar 

  • Ryan RP, Fouhy Y, Garcia BF, Watt SA, Niehaus K, Yang L, Tolker-Nielsen T, Dow JM (2008) Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol Microbiol 68:75–86

    CAS  PubMed  Google Scholar 

  • Sadovskaya I, Vinogradov E, Li J, Jabbouri S (2004) Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus epidermidis RP62A, a reference biofilm-positive strain. Carbohydr Res 339:1467–1473

    CAS  PubMed  Google Scholar 

  • Safdar N, Maki DG (2002) Inflammation at the insertion site is not predictive of catheter-related bloodstream infection with short-term, noncuffed central venous catheters. Crit Care Med 30:2632–2635

    PubMed  Google Scholar 

  • Sarkisova S, Patrauchan MA, Berglund D, Nivens DE, Franklin MJ (2005) Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. J Bacteriol 187:4327–4337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, Gilbert P (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186:7312–7326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shanks RM, Sargent JL, Martinez RM, Graber ML, O’Toole GA (2006) Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. Nephrol Dial Transplant 21:2247–2255

    CAS  PubMed  Google Scholar 

  • Shenkman B, Varon D, Tamarin I, Dardik R, Peisachov M, Savion N, Rubinstein E (2002) Role of agr (RNAIII) in Staphylococcus aureus adherence to fibrinogen, fibronectin, platelets and endothelial cells under static and flow conditions. J Med Microbiol 51:747–754

    CAS  PubMed  Google Scholar 

  • Sherertz RJ, Raad II, Belani A, Koo LC, Rand KH, Pickett DL, Straub SA, Fauerbach LL (1990) Three-year experience with sonicated vascular catheter cultures in a clinical microbiology laboratory. J Clin Microbiol 28:76–82

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shih PC, Huang CT (2002) Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. J Antimicrob Chemother 49:309–314

    CAS  PubMed  Google Scholar 

  • Siegman-Igra Y, Anglim AM, Shapiro DE, Adal KA, Strain BA, Farr BM (1997) Diagnosis of vascular catheter-related bloodstream infection: a meta-analysis. J Clin Microbiol 35:928–936

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sillankorva S, Oliveira R, Vieira MJ, Sutherland IW, Azeredo J (2004) Bacteriophage Phi S1 infection of Pseudomonas fluorescens planktonic cells versus biofilms. Biofouling 20:133–138

    PubMed  Google Scholar 

  • Silverman RJ, Nobbs AH, Vickerman MM, Barbour ME, Jenkinson HF (2010) Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. Infect Immun 78:4644–4652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555

    CAS  PubMed  Google Scholar 

  • Slobbe L, El Barzouhi A, Boersma E, Rijnders BJ (2009) Comparison of the roll plate method to the sonication method to diagnose catheter colonization and bacteremia in patients with long-term tunnelled catheters: a randomized prospective study. J Clin Microbiol 47:885–888

    PubMed Central  PubMed  Google Scholar 

  • Song B, Leff LG (2006) Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens. Microbiol Res 161:355–361

    CAS  PubMed  Google Scholar 

  • Soufir L, Timsit JF, Mahe C, Carlet J, Regnier B, Chevret S (1999) Attributable morbidity and mortality of catheter-related septicemia in critically ill patients: a matched, risk-adjusted, cohort study. Infect Control Hosp Epidemiol 20:396–401

    CAS  PubMed  Google Scholar 

  • Steinberger RE, Holden PA (2005) Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl Environ Microbiol 71:5404–5410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1999) Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Biotechnol Bioeng 65:83–92

    CAS  PubMed  Google Scholar 

  • Sutherland IW (1983) Microbial exopolysaccharides – their role in microbial adhesion in aqueous systems. Crit Rev Microbiol 10:173–201

    CAS  PubMed  Google Scholar 

  • Sutherland IW (2001) The biofilm matrix–an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    CAS  PubMed  Google Scholar 

  • Sutherland IW, Hughes KA, Skillman LC, Tait K (2004) The interaction of phage and biofilms. FEMS Microbiol Lett 232:1–6

    CAS  PubMed  Google Scholar 

  • Sutter D, Stagliano D, Braun L, Williams F, Arnold J, Ottolini M, Epstein J (2008) Polymicrobial bloodstream infection in pediatric patients: risk factors, microbiology, and antimicrobial management. Pediatr Infect Dis J 27:400–405

    PubMed  Google Scholar 

  • Switalski LM, Patti JM, Butcher W, Gristina AG, Speziale P, Hook M (1993) A collagen receptor on Staphylococcus aureus strains isolated from patients with septic arthritis mediates adhesion to cartilage. Mol Microbiol 7:99–107

    CAS  PubMed  Google Scholar 

  • Thomas VC, Thurlow LR, Boyle D, Hancock LE (2008) Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J Bacteriol 190:5690–5698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thumbikat P, Berry RE, Zhou G, Billips BK, Yaggie RE, Zaichuk T, Sun TT, Schaeffer AJ, Klumpp DJ (2009) Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog 5:e1000415

    PubMed Central  PubMed  Google Scholar 

  • Uhlich GA, Cooke PH, Solomon EB (2006) Analyses of the red-dry-rough phenotype of an Escherichia coli O157: H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl Environ Microbiol 72:2564–2572

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ulett GC, Valle J, Beloin C, Sherlock O, Ghigo JM, Schembri MA (2007) Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect Immun 75:3233–3244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uppuluri P, Pierce CG, Thomas DP, Bubeck SS, Saville SP, Lopez-Ribot JL (2010) The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion. Eukaryot Cell 9:1531–1537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Veenstra DL, Saint S, Saha S, Lumley T, Sullivan SD (1999) Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis. JAMA 281:261–267

    CAS  PubMed  Google Scholar 

  • Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T (2005) CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol 56:1648–1663

    CAS  PubMed  Google Scholar 

  • Wang R, Khan BA, Cheung GY, Bach TH, Jameson-Lee M, Kong KF, Queck SY, Otto M (2011) Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J Clin Invest 121:238–248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    CAS  PubMed  Google Scholar 

  • Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, Givskov M, Kjelleberg S (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:4585–4592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wellens A, Garofalo C, Nguyen H, Van Gerven N, Slattegard R, Hernalsteens JP, Wyns L, Oscarson S, De Greve H, Hultgren S, Bouckaert J (2008) Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. PLoS One 3:e2040

    PubMed Central  PubMed  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    CAS  PubMed  Google Scholar 

  • Wu Y, Outten FW (2009) IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J Bacteriol 191:1248–1257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, Tolker-Nielsen T (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153:1318–1328

    CAS  PubMed  Google Scholar 

  • Yang L, Liu Y, Wu H, Hoiby N, Molin S, Song ZJ (2011) Current understanding of multi-species biofilms. Int J Oral Sci 3:74–81

    PubMed Central  PubMed  Google Scholar 

  • Yang L, Hengzhuang W, Wu H, Damkiaer S, Jochumsen N, Song Z, Givskov M, Hoiby N, Molin S (2012) Polysaccharides serve as scaffold of biofilms formed by mucoid Pseudomonas aeruginosa. FEMS Immunol Med Microbiol 65:366–376

    CAS  PubMed  Google Scholar 

  • Yoon SS, Hennigan RF, Hilliard GM, Ochsner UA, Parvatiyar K, Kamani MC, Allen HL, Dekievit TR, Gardner PR, Schwab U, Rowe JJ, Iglewski BH, Mcdermott TR, Mason RP, Wozniak DJ, Hancock RE, Parsek MR, Noah TL, Boucher RC, Hassett DJ (2002) Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3:593–603

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Raad is co-inventor of technology related to minocycline and rifampin-coated catheters. This technology is the property of The University of Texas MD Anderson Cancer Center and the Baylor College of Medicine and is licensed to Cook, Inc. Dr. Raad is also a co-inventor of technology related to minocycline-EDTA Lock. This technology is licensed to Novel Anti-infective Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam Raad MD, FACP, IDSA, FSHEA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yousif, A., Jamal, M.A., Raad, I. (2015). Biofilm-Based Central Line-Associated Bloodstream Infections. In: Donelli, G. (eds) Biofilm-based Healthcare-associated Infections. Advances in Experimental Medicine and Biology, vol 830. Springer, Cham. https://doi.org/10.1007/978-3-319-11038-7_10

Download citation

Publish with us

Policies and ethics