Skip to main content

Black Hole Algorithm and Its Applications

  • Chapter
  • First Online:
Computational Intelligence Applications in Modeling and Control

Part of the book series: Studies in Computational Intelligence ((SCI,volume 575))

Abstract

Bio-inspired computation is a field of study that connects together numerous subfields of connectionism (neural network), social behavior, emergence field of artificial intelligence and machine learning algorithms for complex problem optimization. Bio-inspired computation is motivated by nature and over the last few years, it has encouraged numerous advance algorithms and set of computational tools for dealing with complex combinatorial optimization problems. Black Hole is a new bio-inspired metaheuristic approach based on observable fact of black hole phenomena. It is a population based algorithmic approach like genetic algorithm (GAs), ant colony optimization (ACO) algorithm, particle swarm optimization (PSO), firefly and other bio-inspired computation algorithms. The objective of this book chapter is to provide a comprehensive study of black hole approach and its applications in different research fields like data clustering problem, image processing, data mining, computer vision, science and engineering. This chapter provides with the stepping stone for future researches to unveil how metaheuristic and bio-inspired commutating algorithms can improve the solutions of hard or complex problem of optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tan, X., Bhanu, B.: Fingerprint matching by genetic algorithms. Pattern Recogn. 39, 465–477 (2006)

    Article  MATH  Google Scholar 

  2. Karakuzu, C.: Fuzzy controller training using particle swarm optimization for nonlinear system control. ISA Trans. 47(2), 229–239 (2008)

    Article  Google Scholar 

  3. Rajabioun, R.: Cuckoo optimization algorithm. Elsevier Appl. Soft Comput. 11, 5508–5518 (2011)

    Article  Google Scholar 

  4. Tsai Hsing, C., Lin, Yong-H: Modification of the fish swarm algorithm with particle swarm optimization formulation and communication behavior. Appl. Soft Comput. Elsevier 1, 5367–5374 (2011)

    Article  Google Scholar 

  5. Baojiang, Z., Shiyong, L.: Ant colony optimization algorithm and its application to neu ro-fuzzy controller design. J. Syst. Eng. Electron. 18, 603–610 (2007)

    Article  MATH  Google Scholar 

  6. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)

    Article  Google Scholar 

  7. Farmer, J.D., et al.: The immune system, adaptation and machine learning. Phys. D Nonlinear Phenom. Elsevier 22(1–3), 187–204 (1986)

    Google Scholar 

  8. Kim, D.H., Abraham, A., Cho, J.H.: A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inf. Sci. 177, 3918–3937 (2007)

    Article  Google Scholar 

  9. Kirkpatrick, S., Gelatto, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tang, K.S., Man, K.F., Kwong, S., He, Q.: Genetic algorithms and their applications. IEEE Sig. Process. Mag. 3(6), 22–37 (1996)

    Article  Google Scholar 

  11. Du, Weilin, Li, B.: Multi-strategy ensemble particle swarm optimization for dynamic optimization. Inf. Sci. 178, 3096–3109 (2008)

    Article  MATH  Google Scholar 

  12. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3, 82–102 (1999)

    Article  Google Scholar 

  13. Liu, Y., Yi, Z., Wu, H., Ye, M., Chen, K.: A tabu search approach for the minimum sum-of-squares clustering problem. Inf. Sci. 178(12), 2680–2704 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kim, T.H., Maruta, I., Sugie, T.: Robust PID controller tuning based on the constrained particle swarm optimization. J. Autom. Sciencedirect 44(4), 1104–1110 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cordon, O., Santamarı, S., Damas, J.: A fast and accurate approach for 3D image registration using the scatter search evolutionary algorithm. Pattern Recogn. Lett. 27, 1191–1200 (2006)

    Article  Google Scholar 

  16. Yang, X.S.: Firefly algorithms for multimodal optimization, In: Proceeding of Stochastic Algorithms: Foundations and Applications (SAGA), 2009 (2009)

    Google Scholar 

  17. Kalinlia, A., Karabogab, N.: Artificial immune algorithm for IIR filter design. Eng. Appl. Artif. Intell. 18, 919–929 (2005)

    Article  Google Scholar 

  18. Lin, Y.L., Chang, W.D., Hsieh, J.G.: A particle swarm optimization approach to nonlinear rational filter modeling. Expert Syst. Appl. 34, 1194–1199 (2008)

    Article  Google Scholar 

  19. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  20. Jackson, D.E.,  Ratnieks, F.L.W.: Communication in ants. Curr. Biol. 16, R570–R574 (2006)

    Article  Google Scholar 

  21. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76, 579–581 (1989)

    Article  Google Scholar 

  22. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. Proc. IEEE Int. Conf. Neural Networks 4, 1942–1948 (1995)

    Google Scholar 

  23. Yang, X. S.: 2010, ‘Nature-inspired metaheuristic algorithms’, Luniver Press

    Google Scholar 

  24. Tarasewich, p, McMullen, P.R.: Swarm intelligence: power in numbers. Commun. ACM 45, 62–67 (2002)

    Article  Google Scholar 

  25. Senthilnath, J., Omkar, S.N., Mani, V.: Clustering using firefly algorithm: performance study. Swarm Evol. Comput. 1(3), 164–171 (2011)

    Article  Google Scholar 

  26. Yang, X.S.: Firefly algorithm. Engineering Optimization, pp. 221–230 (2010)

    Google Scholar 

  27. Yang, X.S.: Bat algorithm for multi-objective optimization. Int. J. Bio-inspired Comput. 3(5), 267–274 (2011)

    Google Scholar 

  28. Tripathi, P.K., Bandyopadhyay, S., Pal, S.K.: Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf. Sci. 177, 5033–5049 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University (2005)

    Google Scholar 

  30. Ellabib, I., Calamari, P., Basir, O.: Exchange strategies for multiple ant colony system. Inf. Sci. 177, 1248–1264 (2007)

    Article  Google Scholar 

  31. Hamzaçebi, C.: Improving genetic algorithms performance by local search for continuous function optimization. Appl. Math. Comput. 96(1), 309–317 (2008)

    Article  Google Scholar 

  32. Lozano, M., Herrera, F., Cano, J.R.: Replacement strategies to preserve useful diversity in steady-state genetic algorithms. Inf. Sci. 178, 4421–4433 (2008)

    Article  Google Scholar 

  33. Lazar, A.: Heuristic knowledge discovery for archaeological data using genetic algorithms and rough sets, Heuristic and Optimization for Knowledge Discovery, IGI Global, pp. 263–278 (2014)

    Google Scholar 

  34. Russell, S.J., Norvig, P.: Artificial Intelligence a Modern Approach. Prentice Hall, Upper Saddle River (2010). 1132

    Google Scholar 

  35. Fred, W.: Glover, Manuel Laguna, Tabu Search, 1997, ISBN: 079239965X

    Google Scholar 

  36. Christian, B., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surveys (CSUR) 35(3), 268–308 (2003)

    Article  Google Scholar 

  37. Gazi, V., Passino, K.M.: Stability analysis of social foraging swarms. IEEE Trans. Syst. Man Cybern. Part B 34(1), 539–557 (2008)

    Article  Google Scholar 

  38. Deb, K.: Optimization for Engineering Design: Algorithms and Examples, Computer-Aided Design. PHI Learning Pvt. Ltd., New Delhi (2009)

    Google Scholar 

  39. Rashedi, E.: Gravitational Search Algorithm. M.Sc. Thesis, Shahid Bahonar University of Kerman, Kerman (2007)

    Google Scholar 

  40. Shah-Hosseini, H.: The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int. J. Bio-inspired Comput. 1(1), 71–79 (2009)

    Article  Google Scholar 

  41. Dos Santos, C.L., et al.: A multiobjective firefly approach using beta probability. IEE Trans. Magn. 49(5), 2085–2088 (2013)

    Google Scholar 

  42. Talbi, E.G.: Metaheuristics: from design to implementation, vol. 74, p. 500. Wiley, London (2009)

    Book  Google Scholar 

  43. Giacconi, R., Kaper, L., Heuvel, E., Woudt, P.: Black hole research past and future. In: Black Holes in Binaries and Galactic Nuclei: Diagnostics. Demography and Formation, pp. 3–15. Springer, Berlin, Heidelberg (2001)

    Google Scholar 

  44. Pickover, C.: Black Holes: A Traveler’s Guide. Wiley, London (1998)

    Google Scholar 

  45. Frolov, V.P., Novikov, I.D.: Phys. Rev. D. 42, 1057 (1990)

    Google Scholar 

  46. Schutz, B. F.: Gravity from the Ground Up. Cambridge University Press, Cambridge. ISBN 0-521-45506-5 (2003)

    Google Scholar 

  47. Davies, P.C.W.: Thermodynamics of Black Holes. Reports on Progress in Physics, Rep. Prog. Phys. vol. 41 Printed in Great Britain (1978)

    Google Scholar 

  48. Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relativity 1(1998), 6 (1998)

    MathSciNet  Google Scholar 

  49. Nemati, M., Momeni, H., Bazrkar, N.: Binary black holes algorithm. Int. J. Comput. Appl. 79(6), 36–42 (2013)

    Google Scholar 

  50. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  51. Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization. Inf. Sci. 192, 120–142 (2012)

    Article  Google Scholar 

  52. El-Abd, M.: Performance assessment of foraging algorithms vs. evolutionary algorithms. Inf. Sci. 182, 243–263 (2012)

    Article  MathSciNet  Google Scholar 

  53. Ghosh, S., Das, S., Roy, S., Islam, M.S.K., Suganthan, P.N.: A differential covariance matrix adaptation evolutionary algorithm for real parameter optimization. Inf. Sci. 182, 199–219 (2012)

    Article  Google Scholar 

  54. Fox, B., Xiang, W., Lee, H.: Industrial applications of the ant colony optimization algorithm. Int. J. Adv. Manuf. Technol. 31, 805–814 (2007)

    Article  Google Scholar 

  55. Geem, Z., Cisty, M.: Application of the harmony search optimization in irrigation. Recent Advances in Harmony Search Algorithm’, pp. 123–134. Springer, Berlin (2010)

    Chapter  Google Scholar 

  56. Selim, S.Z., Ismail, M.A.: K-means-type algorithms: a generalized convergence theorem and characterization of local optimality pattern analysis and machine intelligence. IEEE Trans. PAMI 6, 81–87 (1984)

    Article  MATH  Google Scholar 

  57. Wang, J., Peng, H., Shi, P.: An optimal image watermarking approach based on a multi-objective genetic algorithm. Inf. Sci. 181, 5501–5514 (2011)

    Article  Google Scholar 

  58. Picard, D., Revel, A., Cord, M.: An application of swarm intelligence to distributed image retrieval. Inf. Sci. 192, 71–81 (2012)

    Article  Google Scholar 

  59. Chaturvedi, D.: Applications of genetic algorithms to load forecasting problem. Springer, Berlin, pp. 383–402 (2008) (Journal of Soft Computing)

    Google Scholar 

  60. Christmas, J., Keedwell, E., Frayling, T.M., Perry, J.R.B.: Ant colony optimization to identify genetic variant association with type 2 diabetes. Inf. Sci. 181, 1609–1622 (2011)

    Article  Google Scholar 

  61. Guo, Y.W., Li, W.D., Mileham, A.R., Owen, G.W.: Applications of particle swarm optimization in integrated process planning and scheduling. Robot. Comput.-Integr. Manuf. Elsevier 25(2), 280–288 (2009)

    Article  Google Scholar 

  62. Rana, S., Jasola, S., Kumar, R.: A review on particle swarm optimization algorithms and their applications to data clustering. Artif. Intell. Rev. 35, 211–222 (2011)

    Article  Google Scholar 

  63. Yeh, W.C.: Novel swarm optimization for mining classification rules on thyroid gland data. Inf. Sci. 197, 65–76 (2012)

    Article  Google Scholar 

  64. Zhang, Y., Gong, D.W., Ding, Z.: A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Inf. Sci. 192, 213–227 (2012)

    Article  Google Scholar 

  65. Marinakis, Y., Marinaki, M., Dounias, G.: Honey bees mating optimization algorithm for the Euclidean traveling salesman problem. Inf. Sci. 181, 4684–4698 (2011)

    Article  MathSciNet  Google Scholar 

  66. Anderberg, M.R.: Cluster analysis for application. Academic Press, New York (1973)

    Google Scholar 

  67. Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)

    MATH  Google Scholar 

  68. Valizadegan, H., Jin, R., Jain, A.K.: Semi-supervised boosting for multi-class classification. 19th European Conference on Machine Learning (ECM), pp. 15–19 (2008)

    Google Scholar 

  69. Chris, D., Xiaofeng, He: Cluster merging and splitting in hierarchical clustering algorithms. Proc. IEEE ICDM 2002, 1–8 (2002)

    Google Scholar 

  70. Leung, Y., Zhang, J., Xu, Z.: Clustering by scale-space filtering. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1396–1410 (2000)

    Article  Google Scholar 

  71. Révész, P.: On a problem of Steinhaus. Acta Math. Acad. Scientiarum Hung. 16(3–4), 311–331 (1965)

    Google Scholar 

  72. Niknam, T., et al.: An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering. J. Zhejiang Univ. Sci. A 10(4), 512–519 (2009)

    Google Scholar 

  73. Niknam, T., Amiri, B.: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl. Soft Comput. 10(1), 183–197 (2011)

    Article  Google Scholar 

  74. Ding, C., He, X.: K-means clustering via principal component analysis. Proceedings of the 21th international conference on Machine learning, pp. 29 (2004)

    Google Scholar 

  75. Uddin, M.F., Youssef, A.M.: Cryptanalysis of simple substitution ciphers using particle swarm optimization. IEEE Congress on Evolutionary Computation, pp. 677–680 (2006)

    Google Scholar 

  76. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    Article  Google Scholar 

  77. Danziger, M., Amaral Henriques, M.A.: Computational intelligence applied on cryptology: a brief review. Latin America Transactions IEEE (Revista IEEE America Latina) 10(3), 1798–1810 (2012)

    Article  Google Scholar 

  78. Chee, Y., Xu, D.: Chaotic encryption using discrete-time synchronous chaos. Phys. Lett. A 348(3–6), 284–292 (2006)

    Article  MATH  Google Scholar 

  79. Hussein, R.M., Ahmed, H.S., El-Wahed, W.: New encryption schema based on swarm intelligence chaotic map. Proceedings of 7th International Conference on Informatics and Systems (INFOS), pp. 1–7 (2010)

    Google Scholar 

  80. Chen, G., Mao, Y.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solutions Fractals 21, 749–761 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  81. Hongbo, Liu: Chaotic dynamic characteristics in swarm intelligence. Appl. Soft Comput. 7, 1019–1026 (2007)

    Article  Google Scholar 

  82. Azizipanah-Abarghooeea, R., et al.: Short-term scheduling of thermal power systems using hybrid gradient based modified teaching–learning optimizer with black hole algorithm. Electric Power Syst. Res. Elsevier 108, 16–34 (2014)

    Google Scholar 

  83. Bard, J.F.: Short-term scheduling of thermal-electric generators using Lagrangian relaxation. Oper. Res. 36(5), 756–766 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  84. Yu, I.K., Song, Y.H.: A novel short-term generation scheduling technique of thermal units using ant colony search algorithms. Int. J. Electr. Power Energy Syst. 23, 471–479 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, S., Datta, D., Singh, S.K. (2015). Black Hole Algorithm and Its Applications. In: Azar, A., Vaidyanathan, S. (eds) Computational Intelligence Applications in Modeling and Control. Studies in Computational Intelligence, vol 575. Springer, Cham. https://doi.org/10.1007/978-3-319-11017-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11017-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11016-5

  • Online ISBN: 978-3-319-11017-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics