Skip to main content

Box and Jenkins Nonlinear System Modelling Using RBF Neural Networks Designed by NSGAII

  • Chapter
  • First Online:
Computational Intelligence Applications in Modeling and Control

Part of the book series: Studies in Computational Intelligence ((SCI,volume 575))

Abstract

In this work, we use radial basis function neural network for modeling nonlinear systems. Generally, the main problem in artificial neural network is often to find a better structure. The choice of the architecture of artificial neural network for a given problem has long been a problem. Developments show that it is often possible to find architecture of artificial neural network that greatly improves the results obtained with conventional methods. We propose in this work a method based on No Sorting Genetic Algorithm II (NSGA II) to determine the best parameters of a radial basis function neural network. The NSGAII should provide the best connection weights between the hidden layer and output layer, find the parameters of the radial function of neurons in the hidden layer and the optimal number of neurons in the hidden layers and thus ensure learning necessary. Two functions are optimized by NSGAII: the number of neurons in the hidden layer of the radial basis function neural network, and the error which is the difference between desired input and the output of the radial basis function neural network. This method is applied to modeling Box and Jenkins system. The obtained results are very satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adham, A.M., Mohd-Ghazali, N., Ahmad, R.: Optimization of an ammonia-cooled rectangular microchannel heat sink using multi-objective non-dominated sorting genetic algorithm (NSGA2). Heat Mass Transf. 48(10), 1723–1733 (2012). doi:10.1007/s00231-012-1016-8

    Article  Google Scholar 

  2. Anderson, D., Sweeney, D., Williams, T., Camm, J., Martin, R.: An introduction to management science: quantitative approaches to decision making, revised. Cengage Learning (2011)

    Google Scholar 

  3. Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans. Neural Netw. 5(1), 54–65 (1994). doi:10.1109/72.265960

    Article  Google Scholar 

  4. Azar, A.T.: Adaptive neuro-fuzzy system as a novel approach for predicting post-dialysis urea rebound. Int. J. Intell. Syst. Technol. Appl. 10(3), 302–330 (2011). doi:10.1504/IJISTA.2011.040352

    Google Scholar 

  5. Azar, A.T.: Fast neural network learning algorithms for medical applications. Neural Comput. Appl. 23(3–4), 1019–1034 (2013). doi:10.1007/s00521-012-1026-y

    Article  Google Scholar 

  6. Azar, A.T., Yashiro, M., Schneditz, D., Roa, L.M.: Double pool urea kinetic modeling. In: Azar, A.T. (ed.) Modelling and Control of Dialysis Systems. Studies in Computational Intelligence, vol. 404, pp. 627–687. Springer, Berlin (2013)

    Chapter  Google Scholar 

  7. Badkar, D.S., Pandey, K.S., Buvanashekaran, G.: Development of RSM- and ANN-based models to predict and analyze the effects of process parameters of laser-hardened commercially pure titanium on heat input and tensile strength. Int. J. Adv. Manuf. Technol. 65(9–12), 1319–1338 (2013). doi:10.1007/s00170-012-4259-0

    Article  Google Scholar 

  8. Bermejo, D.M.A.V.: A mathematical model to predict δ- ferrite content in austenitic stainless steel weld metals. Weld. World 56(9–10), 48–68 (2012). doi:10.1007/BF03321381

    Article  Google Scholar 

  9. Binder, M.D., Hirokawa, N., Windhorst, U. (eds.) Artificial neural networks. In: Encyclopedia of Neuroscience, pp. 185–185. Springer, Berlin (2009)

    Google Scholar 

  10. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control. Wiley, New York (2013)

    Google Scholar 

  11. Cantley, K.D., Subramaniam, A., Stiegler, H.J., Chapman, R.A., Vogel, E.M.: Hebbian learning in spiking neural networks with nanocrystalline silicon TFTs and memristive synapses. IEEE Trans. Nanotechnol. 10(5), 1066–1073 (2011)

    Article  Google Scholar 

  12. Carrasco, R., Sanchez, E.N., Carlos-Hernandezy, S.: Neural network identification for biomass gasification kinetic model. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 1888–1893. Available at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6033454 (2011). Accessed: 2 May 2014

  13. Chai, W., Qiao, J.: Non-linear system identification and fault detection method using RBF neural networks with set membership estimation. Int. J. Model. Ident. Control 20(2), 114 (2013). doi:10.1504/IJMIC.2013.056183

    Article  Google Scholar 

  14. Chen, H., Gong, Y., Hong, X.: Online Modeling With Tunable RBF Network. IEEE Trans. Cybern. 43(3), 935–947 (2013). doi:10.1109/TSMCB.2012.2218804

    Article  Google Scholar 

  15. Chen, T., Chen, H.: Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks. IEEE Trans. Neural Netw. 6(4), 904–910 (1995). doi:10.1109/72.392252

    Article  Google Scholar 

  16. Cherkassky, V., Friedman, J.H., Wechsler, H.: From statistics to neural networks: theory and pattern recognition applications. Springer Publishing Company, Incorporated (2012)

    Google Scholar 

  17. Cook, D.F., Ragsdale, C.T., Major, R.L.: Combining a neural network with a genetic algorithm for process parameter optimization. Eng. Appl. Artif. Intell. 13(4), 391–396 (2000). doi:10.1016/S0952-1976(00)00021-X

    Article  Google Scholar 

  18. Dahl, G.E., Sainath, T.N. and Hinton, G.E.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8609–8613. IEEE (2013)

    Google Scholar 

  19. Deb, K., Goel, T.: Controlled Elitist non-dominated sorting genetic algorithms for better convergence. In: Zitzler, E., Thiele, L., Deb, K., Coello, C.A.C., Corne, D. (eds.) Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, pp. 67–81. Springer, Berlin (2001)

    Google Scholar 

  20. Deichmueller, M., Denkena, B., de Payrebrune, K.M., Kröger, M., Wiedemann, S., Schröder, A., Carstensen, C. (2013) Modeling of process machine interactions in tool grinding. In: Process Machine Interactions, pp. 143–176. Springer, Berlin

    Google Scholar 

  21. Deutschmann, O.: Modeling and Simulation of Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System. Wiley, New York (2013)

    Google Scholar 

  22. Domínguez, J., Montiel-Ross, O., Sepúlveda, R.: High-performance architecture for the modified NSGA-II. In: Melin, P., Castillo, O. (eds.) Soft Computing Applications in Optimization, Control, and Recognition. Studies in Fuzziness and Soft Computing, vol. 294, pp. 321–341. Springer, Berlin Heidelberg (2013)

    Google Scholar 

  23. Urbani, D., Marcos, S., Thiria, S.: (1995) Statistical methods for selecting neural architectures: application to the design of models of dynamic processes. PhD thesis of University Pierre and Marie Curie

    Google Scholar 

  24. Furtuna, R., Curteanu, S., Leon, F.: Multi-objective optimization of a stacked neural network using an evolutionary hyper-heuristic. Appl. Soft Comput. 12(1), 133–144 (2012). doi:10.1016/j.asoc.2011.09.001

    Article  Google Scholar 

  25. Box, G.E.P., Jenkins, G.M.: Time series analysis: forecasting and control, p. 575. Holden-Day, San Francisco (1976)

    MATH  Google Scholar 

  26. Giles, C.L., Chen, D., Sun, G.-Z., Chen, H.-H., Lee, Y.-C., Goudreau, M.W.: Constructive learning of recurrent neural networks: limitations of recurrent cascade correlation and a simple solution. IEEE Trans. Neural Netw. 6(4), 829–836 (1995). doi:10.1109/72.392247

    Article  Google Scholar 

  27. Giles, C.L., Miller, C.B., Chen, D., Chen, H.H., Sun, G.Z., Lee, Y.C.: Learning and extracting finite state automata with second-order recurrent neural networks. Neural Comput. 4(3), 393–405 (1992). doi:10.1162/neco.1992.4.3.393

    Article  Google Scholar 

  28. Gilson, M., Py, J.S., Brault, J.-J., Sawan, M.: Training recurrent pulsed networks by genetic and Taboo methods. In: Canadian Conference on Electrical and Computer Engineering, 2003, IEEE CCECE 2003, vol. 3, pp. 1857–1860 (2003). doi:10.1109/CCECE.2003.1226273

  29. Girosi, F., Poggio, T.: Networks and the best approximation property. Biol. Cybern. 63(3), 169–176 (1990). doi:10.1007/BF00195855

    Article  MATH  MathSciNet  Google Scholar 

  30. Gossard, D., Lartigue, B., Thellier, F.: Multi-objective optimization of a building envelope for thermal performance using genetic algorithms and artificial neural network. Energy Build. 67, 253–260 (2013). doi:10.1016/j.enbuild.2013.08.026

    Article  Google Scholar 

  31. Grasso, F., Luchetta, A., Manetti, S., Piccirilli, M.C.: System identification and modelling based on a double modified multi-valued neural network. Analog Integr. Circ. Sig. Process 78(1), 165–176 (2014). doi:10.1007/s10470-013-0211-y

    Article  Google Scholar 

  32. Guerra, F.A., dos Coelho, L.S.: Multi-step ahead nonlinear identification of Lorenz’s chaotic system using radial basis neural network with learning by clustering and particle swarm optimization. Chaos, Solitons Fractals 35(5), 967–979 (2008). doi:10.1016/j.chaos.2006.05.077

    Article  MATH  Google Scholar 

  33. Gupta, M.M., Rao, D.H.: Neuro-control systems: theory and applications. IEEE, New York (1993)

    Google Scholar 

  34. Gutiérrez, P.A., Hervas-Martinez, C., Martínez-Estudillo, F.J.: Logistic regression by means of evolutionary radial basis function neural networks. IEEE Trans. Neural Netw. 22(2), 246–263 (2011). doi:10.1109/TNN.2010.2093537

    Article  Google Scholar 

  35. Hashmi, K., Alhosban, A., Najmi, E., Malik, Z., Rezgui (2013) Automated Web service quality component negotiation using NSGA-2. In: 2013 ACS International Conference on Computer Systems and Applications (AICCSA), pp. 1–6. doi:10.1109/AICCSA.2013.6616502

  36. Haykin, S., Widrow, B. (2003) Least-Mean-Square Adaptive Filters. Wiley, New York (2003)

    Google Scholar 

  37. Jacek M.Z.: Introduction to Artificial Neural Systems. Jaico Publishing House, Mumbai (1992)

    Google Scholar 

  38. Jafarnejadsani, H., Pieper, J., Ehlers, J.: Adaptive control of a variable-speed variable-pitch wind turbine using radial-basis function neural network. IEEE Trans. Control Syst. Technol. 21(6), 2264–2272 (2013). doi:10.1109/TCST.2012.2237518

    Article  Google Scholar 

  39. Lamamra, K., Belarbi, K., Bosche, J., Hajjaji, A.E.L.: A neural network controller optimised with multi objective genetic algorithms for a laboratory anti-lock braking system. Sci. Technol. J. Constantine 1 Univ 35 (2012)

    Google Scholar 

  40. Kasabov, N., Dhoble, K., Nuntalid, N., Indiveri, G.: Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition. Neural Networks 41, 188–201 (2013)

    Article  Google Scholar 

  41. Levine, D.S., Aparicio I.V.M.: Neural networks for knowledge representation and inference. Psychology Press, Rouledge (2013)

    Google Scholar 

  42. Mallot, H.A.: Artificial neural networks. In: Computational Neuroscience, Springer Series in Bio-/Neuroinformatics, vol. 2, pp. 83–112. Springer International Publishing, Berlin (2013)

    Google Scholar 

  43. Min, B.H., Park, C., Jang, I.S., Lee, H.Y., Chung, S.H., Kang, J.M.: Multi-objective history matching allowing for scale-difference and the interwell complication. doi:10.3997/2214-4609.20130172

  44. BG, Mirta: Dynamics of complex systems and applications to SHS: models, concepts, methods. Leibniz-IMAG Laboratory, Grenoble (2004)

    Google Scholar 

  45. Morse, J.N.: Reducing the size of the nondominated set: pruning by clustering. Comput. Oper. Res. 7(1–2), 55–66 (1980). doi:10.1016/0305-0548(80)90014-3

    Article  Google Scholar 

  46. Mukhopadhyay, S., Panigrahi, P.K., Mitra, A., Bhattacharya, P., Sarkar, M., Das, P.: Optimized DHT-RBF model as replacement of ARMA-RBF model for wind power forecasting. In: 2013 International Conference on Emerging Trends in Computing, Communication and Nanotechnology (ICE-CCN), pp. 415–419. doi:10.1109/ICE-CCN.2013.6528534 (2013)

  47. Nikdel, N., Nikdel, P., Badamchizadeh, M.A., Hassanzadeh, I.: Using neural network model predictive control for controlling shape memory alloy-based manipulator. IEEE Trans. Industr. Electron. 61(3), 1394–1401 (2014). doi:10.1109/TIE.2013.2258292

    Article  Google Scholar 

  48. Pendharkar, P.C.: A hybrid radial basis function and data envelopment analysis neural network for classification. Comput. Oper. Res. 38(1), 256–266 (2011). doi:10.1016/j.cor.2010.05.001. (Project Management and Scheduling)

    Article  MATH  MathSciNet  Google Scholar 

  49. Poggio, T., Girosi, F.: Networks for approximation and learning. Proc. IEEE 78(9), 1481–1497 (1990). doi:10.1109/5.58326

    Article  Google Scholar 

  50. Prasad, K.V.R.B., Singru, P.M.: Optimum design of turbo-alternator using modified NSGA-II algorithm. In: Bansal, J.C., Singh, P., Deep, K., Pant, M., Nagar, A. (eds.) Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), Advances in Intelligent Systems and Computing, vol. 202, pp. 253–264. Springer, India (2013)

    Google Scholar 

  51. Roberto, B., Ubaldo, C., Stefano, M., Roberto, I., Elisa, S., Paolo, M.: Graybox and adaptative dynamic neural network identification models to infer the steady state efficiency of solar thermal collectors starting from the transient condition. Sol. Energy 84(6), 1027–1046 (2010)

    Article  Google Scholar 

  52. Dos Santos Coelho, L., Ferreira da Cruz, L., Zanetti Freire, R.: Swim velocity profile identification by using a modified differential evolution method associated with RBF neural network. In: 2013 Third International Conference on Innovative Computing Technology (INTECH), pp. 389–395. doi:10.1109/INTECH.2013.6653721 (2013)

  53. Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) (2000) A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. Parallel Problem Solving from Nature PPSN VI. Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin (2000)

    Google Scholar 

  54. Sheikhan, M., Shahnazi, R., Garoucy, S.: Hyperchaos synchronization using PSO-optimized RBF-based controllers to improve security of communication systems. Neural Comput. Appl. 22(5), 835–846 (2013). doi:10.1007/s00521-011-0774-4

    Article  Google Scholar 

  55. Sheikhan, M., Shahnazi, R., Hemmati, E.: Adaptive active queue management controller for TCP communication networks using PSO-RBF models. Neural Comput. Appl. 22(5), 933–945 (2013). doi:10.1007/s00521-011-0786-0

    Article  Google Scholar 

  56. Syed, A.A., Pittner, A., Rethmeier, M., De, A.: Modeling of gas metal arc welding process using an analytically determined volumetric heat source. ISIJ Int. 53(4), 698–703 (2013)

    Article  Google Scholar 

  57. Tang, Y., Wong, W.K.: Distributed synchronization of coupled neural networks via randomly occurring control. IEEE Trans. Neural Netw. Learn. Syst. 24(3), 435–447 (2013)

    Article  Google Scholar 

  58. Teixidor, D., Grzenda, M., Bustillo, A., Ciurana, J.: Modeling pulsed laser micromachining of micro geometries using machine-learning techniques. J. Intell. Manuf. 1–14. doi:10.1007/s10845-013-0835-x (2013)

  59. Whitley, D., Starkweather, T., Bogart, C.: Genetic algorithms and neural networks: optimizing connections and connectivity. Parallel Comput. 14(3), 347–361 (1990). doi:10.1016/0167-8191(90)90086-O

    Article  Google Scholar 

  60. Xia, D., Wang, L., Chai, T.: Neural-network-friction compensation-based energy swing-up control of pendubot. IEEE Trans. Industr. Electron. 61(3), 1411–1423 (2014). doi:10.1109/TIE.2013.2262747

    Article  Google Scholar 

  61. Xiao, Z., Liang, S., Wang, J., Chen, P., Yin, X., Zhang, L., Song, J.: Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 52(1), 209–223 (2014). doi:10.1109/TGRS.2013.2237780

    Article  Google Scholar 

  62. Xu, Y., Zheng, J.: Identification of network traffic based on radial basis function neural network. In: Chen, R. (ed.) Intelligent Computing and Information Science. Communications in Computer and Information Science, vol. 134, pp. 173–179. Springer, Berlin (2011)

    Google Scholar 

  63. Yu, H., Xie, T., Paszczynski, S., Wilamowski, B.M.: Advantages of radial basis function networks for dynamic system design. IEEE Trans. Industr. Electron. 58(12), 5438–5450 (2011). doi:10.1109/TIE.2011.2164773

    Article  Google Scholar 

  64. Yuan, J., Yu, S.: Privacy preserving back-propagation neural network learning made practical with cloud computing. IEEE Trans. Parallel Distrib. Syst. 25(1), 212–221 (2014). doi:10.1109/TPDS.2013.18

    Article  Google Scholar 

  65. Zhang, H., Yang, F., Liu, X., Zhang, Q.: Stability analysis for neural networks with time-varying delay based on quadratic convex combination. IEEE Trans. Neural Netw. Learn. Syst. 24(4), 513–521 (2013)

    Article  Google Scholar 

  66. Zhi, C., Guo, L.H., Zhang, M.Y., Shi, Y.: Research on dynamic subspace divided BP neural network identification method of color space transform model. Adv. Mater. Res. 174, 97–100 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kheireddine Lamamra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lamamra, K., Belarbi, K., Boukhtini, S. (2015). Box and Jenkins Nonlinear System Modelling Using RBF Neural Networks Designed by NSGAII. In: Azar, A., Vaidyanathan, S. (eds) Computational Intelligence Applications in Modeling and Control. Studies in Computational Intelligence, vol 575. Springer, Cham. https://doi.org/10.1007/978-3-319-11017-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11017-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11016-5

  • Online ISBN: 978-3-319-11017-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics