Advertisement

Spectroscopic Constraints for Low-Mass Asteroseismic Targets

  • Thierry Morel
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 39)

Abstract

A full exploitation of the observations provided by the CoRoT and Kepler missions depends on our ability to complement these data with accurate effective temperatures and chemical abundances. We review in this contribution the major efforts that have been undertaken to characterise late-type, seismic targets based on spectra gathered as part of the ground-based, follow-up campaigns. A specific feature of the spectroscopic studies of these stars is that the gravity can be advantageously fixed to the more accurate value derived from the pulsation spectrum. We will describe the impact that such an approach has on the estimation of T eff and [Fe/H]. The relevance of red-giant seismic targets for studies of internal mixing processes and stellar populations in our Galaxy will also be briefly discussed.

Keywords

Stellar Population Automate Pipeline Planetary Transit Large Frequency Separation Kepler Input Catalog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I acknowledge financial support from Belspo for contract PRODEX GAIA-DPAC. I am very grateful to the Fonds National de la Recherche Scientifique (FNRS) and Annie Baglin for providing the financial resources that made my attendance possible.

References

  1. Asplund, M., Nordlund, Å., Trampedach, R., & Stein, R. F. 2000, A&A, 359, 743ADSGoogle Scholar
  2. Bensby, T., Feltzing, S., & Oey, M. S. 2014, A&A, 562, A71ADSCrossRefGoogle Scholar
  3. Bruntt, H., Basu, S., Smalley, B., et al. 2012, MNRAS, 423, 122ADSCrossRefGoogle Scholar
  4. Bruntt, H., Bedding, T. R., Quirion, P.-O., et al. 2010, MNRAS, 405, 1907ADSGoogle Scholar
  5. Bruntt, H., Catala, C., Garrido, R., et al. 2002, A&A, 389, 345ADSCrossRefGoogle Scholar
  6. Bruntt, H., Frandsen, S., & Thygesen, A. O. 2011, A&A, 528, A121ADSCrossRefGoogle Scholar
  7. Chaplin, W. J. & Miglio, A. 2013, ARA&A, 51, 353ADSCrossRefGoogle Scholar
  8. Charbonnel, C. & Lagarde, N. 2010, A&A, 522, A10ADSCrossRefGoogle Scholar
  9. Chiappini, C. 2012, Red Giant Stars: Probing the Milky Way Chemical Enrichment, ed. A. Miglio, J. Montalbán, & A. Noels, 147Google Scholar
  10. Collet, R., Asplund, M., & Trampedach, R. 2007, A&A, 469, 687ADSCrossRefGoogle Scholar
  11. Creevey, O. L., Doǧan, G., Frasca, A., et al. 2012, A&A, 537, A111ADSCrossRefGoogle Scholar
  12. Dobrovolskas, V., Kučinskas, A., Steffen, M., et al. 2013, A&A, 559, A102ADSCrossRefGoogle Scholar
  13. Freeman, K. C. 2012, in Astronomical Society of the Pacific Conference Series, Vol. 458, Galactic Archaeology: Near-Field Cosmology and the Formation of the Milky Way, ed. W. Aoki, M. Ishigaki, T. Suda, T. Tsujimoto, & N. Arimoto, 393Google Scholar
  14. Gazzano, J.-C., de Laverny, P., Deleuil, M., et al. 2010, A&A, 523, A91ADSCrossRefGoogle Scholar
  15. Gillon, M. & Magain, P. 2006, A&A, 448, 341ADSCrossRefGoogle Scholar
  16. Gilmore, G., Randich, S., Asplund, M., et al. 2012, The Messenger, 147, 25ADSGoogle Scholar
  17. Huber, D., Chaplin, W. J., Christensen-Dalsgaard, J., et al. 2013, ApJ, 767, 127ADSCrossRefGoogle Scholar
  18. Huber, D., Ireland, M. J., Bedding, T. R., et al. 2012, ApJ, 760, 32ADSCrossRefGoogle Scholar
  19. Kučinskas, A., Steffen, M., Ludwig, H.-G., et al. 2013, A&A, 549, A14ADSCrossRefGoogle Scholar
  20. Lind, K., Bergemann, M., & Asplund, M. 2012, MNRAS, 427, 50ADSCrossRefGoogle Scholar
  21. Luck, R. E. & Heiter, U. 2007, AJ, 133, 2464ADSCrossRefGoogle Scholar
  22. Mathur, S., Bruntt, H., Catala, C., et al. 2013, A&A, 549, A12ADSCrossRefGoogle Scholar
  23. Mészáros, S., Holtzman, J., García Pérez, A. E., et al. 2013, AJ, 146, 133ADSCrossRefGoogle Scholar
  24. Miglio, A., Chiappini, C., Morel, T., et al. 2013, MNRAS, 429, 423ADSCrossRefGoogle Scholar
  25. Molenda-Żakowicz, J., Sousa, S. G., Frasca, A., et al. 2013, MNRAS, 434, 1422ADSCrossRefGoogle Scholar
  26. Montalbán, J., Miglio, A., Noels, A., et al. 2013, ApJ, 766, 118ADSCrossRefGoogle Scholar
  27. Morel, T., Miglio, A., Lagarde, N., et al. 2014, A&A, 564, A119ADSCrossRefGoogle Scholar
  28. Morel, T., Miglio, A., & Valentini, M. 2011, Journal of Physics Conference Series, 328, 012010ADSCrossRefGoogle Scholar
  29. Morel, T., Rainer, M., Poretti, E., Barban, C., & Boumier, P. 2013, A&A, 552, A42ADSCrossRefGoogle Scholar
  30. Stello, D., Huber, D., Bedding, T. R., et al. 2013, ApJ, 765, L41ADSCrossRefGoogle Scholar
  31. Thygesen, A. O., Frandsen, S., Bruntt, H., et al. 2012, A&A, 543, A160ADSCrossRefGoogle Scholar
  32. Torres, G., Fischer, D. A., Sozzetti, A., et al. 2012, ApJ, 757, 161ADSCrossRefGoogle Scholar
  33. Valentini, M., Morel, T., Miglio, A., Fossati, L., & Munari, U. 2013, in European Physical Journal Web of Conferences, Vol. 43, European Physical Journal Web of Conferences, 3006Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut d’Astrophysique et de GéophysiqueUniversité de LiègeLiègeBelgium

Personalised recommendations