Skip to main content

Advanced Task Tracking Control Design for Robotic-Like Systems

  • Conference paper
Book cover Mechatronics - Ideas for Industrial Application

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 317))

Abstract

The paper presents an advanced control design platform for tracking predefined tasks for a class of servicing systems referred to as robotic-like. A common feature of these ground, space or underwater systems is that they are designed to perform a variety of tasks and missions, so they all can be viewed as constrained systems. The control platform takes advantage of model-based control for constrained systems, either on a dynamics or kinematics level. The models are control-oriented what means that they account for tasks to be controlled and all other constraints put on systems or controller properties. The control platform is a fusion of an advanced modeling method for constrained systems and a new control strategy for tracking predefined tasks. It outperforms existing control methods since constraints on systems may be of an arbitrary order and type, and a constrained dynamics is in a reduced-state form, so it is ready for a controller design. A control implementation may rely upon embedded robotics which provides small and inexpensive embedded computer systems for control execution. The control design conforms then to modern mechatronics solutions that enable realizations of sophisticated control algorithms. Examples of controller designs for robotic-like systems and the control platform comparison to the traditional, Lagrange model-based method are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cameron, J.M., Book, W.J.: Modeling mechanisms with nonholonomic joints using the Boltzmann-Hamel equations. Int. J. Robot. Res. 16(1), 47–59 (1997)

    Article  Google Scholar 

  2. Papastavridis, J.G.: On the Boltzmann–Hamel equations of motion: a vectorial treatment. J. Appl. Mech. 61, 453–459 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jarzębowska, E.: Quasi-coordinates based dynamics modeling and control design for nonholonomic systems. Nonlin. Anal. 16(16), 1741–1754 (2008)

    Google Scholar 

  4. Jarzębowska, E.: Model-based tracking control of nonlinear systems. CRC Press, Boca Raton (2012)

    Book  MATH  Google Scholar 

  5. Jarzębowska, E.: Advanced Programmed Motion Tracking Control of Nonholonomic Mechanical Systems. IEEE Trans. Robot. 24(6), 1315–1328 (2008)

    Article  Google Scholar 

  6. Prautsch, P., Mita, T.: Control and analysis of the gait of snake robots. In: Proc. IEEE Int. Conf. on Control Applications, pp. 502–507 (1999)

    Google Scholar 

  7. Salgado-Jimenez, T., Jouvencel, B.: Using a high order sliding modes for diving control a torpedo autonomous underwater vehicle. In: OCEANS, vol. 2, pp. 934–939 (2003)

    Google Scholar 

  8. Jarzębowska, E., Pietrak, K.: Constrained Mechanical Systems Modeling and Control: a Free-Floating Space Manipulator Case as a Multi-Constrained System. Robotics and Autonomous Systems (in press), doi:10.1016/j.robot.2014.04.004

    Google Scholar 

  9. Jarzębowska, E., Szklarz, P., Huan, S.: Kinematic Control Design for Nonholonomic Mechanical Systems Based on the Error Function. In: Awrejcewicz, J. (ed.) Modeling, Simulation and Control of Nonlinear Engineering Dynamical Systems, pp. 221–231. Springer (2009)

    Google Scholar 

  10. Jarzębowska, E., Szklarz San Huan, P.: Coordinate-free formulation of nonholonomic constraints for wheeled robots. In: Awrejcewicz, J. (ed.) accepted to Springer Proceedings in Mathematics and Statistics. Applied Non-Linear Dynamical Systems (2014)

    Google Scholar 

  11. Vafa, Z.: Space manipulator motion with no satellite attitude disturbances. In: Proc. IEEE Int. Conf. Robot. Automat., pp. 1770–1775 (1991)

    Google Scholar 

  12. Koh, K.C., Cho, H.S.: A smooth path tracking algorithm for wheeled mobile robots with dynamic constraints. J. Intell. Robot. Syst. 24, 367–385 (1999)

    Article  MATH  Google Scholar 

  13. Scheuer, A., Laugier, C.: Planning sub-optimal and continuous-curvature paths for car-like robots. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 25–31 (1998)

    Google Scholar 

  14. Grioli, G.: Particular solutions in stereodynamics. Centro Intern. Matem. Estivo, Roma, 1–65 (1972) (in Italian)

    Google Scholar 

  15. Appell, P.: Exemple de mouvement d’un point assujeti a une liason exprimee par une relation Non lineaire entre les composantes de la vitesse. Comptes Renduss, 48–50 (1911)

    Google Scholar 

  16. Beghuin, H.: Course de mecanique, Paris (1947)

    Google Scholar 

  17. Seifried, R.: Dynamics of underactuated multibody systems: Modeling, control and optimal design (Solid mechanics and its applications). Springer, New York (2013)

    Google Scholar 

  18. Chee, W., Tomizuka, M., Patwardhan, S., et al.: Experimental study of lane change maneuver for AHS applications. In: Proc. Am. Control Conf., vol. 1, pp. 139–143 (1995)

    Google Scholar 

  19. Zotov, Y.K., Tomofeyev, A.V.: Controllability and stabilization of programmed motions of reversible mechanical and electromechanical systems. J. Appl. Math. Mech. 56(6), 873–880 (1992)

    Article  MathSciNet  Google Scholar 

  20. Zotov, Y.K.: Controllability and stabilization of programmed motions of an automobile-type transport robot. J. Appl. Maths. Mech. 67(3), 303–327 (2003)

    Article  MathSciNet  Google Scholar 

  21. Macfarlane, S., Croft, E.: Manipulator trajectory planning: design for real-time applications. IEEE Trans. Robot. Automat. 19(1), 42–51 (2003)

    Article  Google Scholar 

  22. Nejmark J.I., Fufaev N.A.: Dynamics of nonholonomic systems. In: Am. Math. Soc., Providence, Rhode Island (1972)

    Google Scholar 

  23. Sowińska, M., Jarzębowska, E.: A fire track dynamics simulation using a quasi-coordinate description, Ms project, Warsaw University of Technology, Power and Aerospace Engineering Department, Warsaw (2014)

    Google Scholar 

  24. Szewczyk, A.: Motion Control of a 3-Degree of Freedom Underactuated Planar Manipulator. Ms Thesis, Warsaw University of Technology, Warsaw (2013)

    Google Scholar 

  25. Jamiołkowski, M.: Control of a Pioneer 3-DX Robot, Bc. Thesis, Warsaw University of Technology, Warsaw (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Jarzębowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jarzębowska, E. (2015). Advanced Task Tracking Control Design for Robotic-Like Systems. In: Awrejcewicz, J., Szewczyk, R., Trojnacki, M., Kaliczyńska, M. (eds) Mechatronics - Ideas for Industrial Application. Advances in Intelligent Systems and Computing, vol 317. Springer, Cham. https://doi.org/10.1007/978-3-319-10990-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10990-9_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10989-3

  • Online ISBN: 978-3-319-10990-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics