Skip to main content

Classifying Epileptic EEG Signals with Delay Permutation Entropy and Multi-scale K-Means

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 823))

Abstract

Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters. Based on the characteristics of EEGs, the MSK-means algorithm initializes the coarse-scale centroid of a cluster with a suitable scale factor. In this chapter, the MSK-means algorithm is proved theoretically superior to the K-means algorithm on efficiency. In addition, three classifiers: the K-means, MSK-means and support vector machine (SVM), are used to identify seizure and localize epileptogenic zone using delay permutation entropy features. The experimental results demonstrate that identifying seizure with the MSK-means algorithm and delay permutation entropy achieves 4. 7 % higher accuracy than that of K-means, and 0. 7 % higher accuracy than that of the SVM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, C.E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 64(6), 061907 (2001)

    Google Scholar 

  2. R.G. Andrzejak, K. Schindler, C. Rummel, Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys. Rev. E 86(4), 046206 (2012)

    Google Scholar 

  3. R.G. Andrzejak, K. Schindler, C. Rummel, The Bern-Barcelona EEG database, http://ntsa.upf.edu/downloads/andrzejak-rg-schindler-k-rummel-c-2012-nonrandomness-nonlinear-dependence-and. Accessed 10 Aug 2013

  4. D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seeding, in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, 2007, pp. 1027–1035

    Google Scholar 

  5. B. Bahmani, B. Moseley, A. Vattani, R. Kumar, S. Vassilvitskii, Scalable k-means++. Proc. VLDB Endow. 5(7), 622–633 (2012)

    Article  Google Scholar 

  6. C. Bandt, B. Pompe, Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Google Scholar 

  7. E. Ben-Jacob, T. Doron, T. Gazit, E. Rephaeli, O. Sagher, V.L. Towle, Mapping and assessment of epileptogenic foci using frequency-entropy templates. Phys. Rev. E 76(5), 051903 (2007)

    Google Scholar 

  8. J.H. Cho, H.C. Kang, Y.J. Jung, J.Y. Kim, H.D. Kim, D.S. Yoon, Y.H. Lee, C.H. Im, Localization of epileptogenic zones in Lennox-Gastaut syndrome using frequency domain source imaging of intracranial electroencephalography: a preliminary investigation. Physiol. Meas. 34(2), 247–263 (2013)

    Article  Google Scholar 

  9. M. Costa, A.L. Goldberger, C.K. Peng, Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89(6), 068102 (2002)

    Google Scholar 

  10. G. Goffin, S. Dedeurwaerdere, K. Van Laere, W. Van Paesschen, Neuronuclear assessment of patients with epilepsy. Semin. Nucl. Med. 38(4), 227–239 (2008)

    Article  Google Scholar 

  11. L. Guo, D. Rivero, J. Dorado, C.R. Munteanu, A. Pazos, Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst. Appl. 38(8), 10425–10436 (2011)

    Article  Google Scholar 

  12. T.R. Henry, R.L. Van Heertum, Positron emission tomography and single photon emission computed tomography in epilepsy care. Semin. Nucl. Med. 33(2), 88–104 (2003)

    Article  Google Scholar 

  13. A. Karatzoglou, D. Meyer, K. Hornik, Support vector machines in R. J. Stat. Softw. 15(9), 1–28 (2006)

    Google Scholar 

  14. R.C. Knowlton, R.A. Elgavish, A. Bartolucci, B. Ojha, N. Limdi, J. Blount, J.G. Burneo, L. Ver Hoef, L. Paige, E. Faught, P. Kankirawatana, K. Riley, R. Kuzniecky, Functional imaging: II. Prediction of epilepsy surgery outcome. Ann. Neurol. 64(1), 35–41 (2008)

    Google Scholar 

  15. P. Krsek, M. Kudr, A. Jahodova, V. Komarek, B. Maton, S. Malone, I. Miller, P. Jayakar, T. Resnick, M. Duchowny, Localizing value of ictal SPECT is comparable to MRI and EEG in children with focal cortical dysplasia. Epilepsia 54(2), 351–358 (2013)

    Article  Google Scholar 

  16. J. Liu, G. Zhu, M. Xi, A k-means algorithm based on the radius. J. Guilin Univ. Electron. Technol. 33(2), 134–138 (2013)

    Google Scholar 

  17. J.B. MacQueen, Some methods of classification and analysis of multivariate observations, in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, 1967, pp. 281–297

    Google Scholar 

  18. M. Matilla-García, M. Ruiz Marín, Detection of non-linear structure in time series. Econ. Lett. 105(1), 1–6 (2009)

    Article  MATH  Google Scholar 

  19. F. Mormann, R.G. Andrzejak, C.E. Elger, K. Lehnertz, Seizure prediction: the long and winding road. Brain 130(2), 314–333 (2007)

    Article  Google Scholar 

  20. N. Nicolaou, J. Georgiou, Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst. Appl. 39(1), 202–209 (2012)

    Article  Google Scholar 

  21. U. Orhan, M. Hekim, M. Ozer, EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38(10), 13475–13481 (2011)

    Article  Google Scholar 

  22. K. Polat, S. Günes, Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl. Math. Comput. 187(2), 1017–1026 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Popov, O. Avilov, O. Kanaykin, Saturation of electroencephalogram permutation entropy for large time lags, in IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO), Kiev, 16–19 Apr 2013, pp. 251–254

    Google Scholar 

  24. F. Rosenow, H. Lüders, Presurgical evaluation of epilepsy. Brain 124(9), 1683–1700 (2001)

    Article  Google Scholar 

  25. S. Siuly, Y. Li, P. Wen, Clustering technique-based least square support vector machine for EEG signal classification. Comput. Methods Programs Biomed. 104(3), 358–372 (2011)

    Article  Google Scholar 

  26. Y. Song, P. Liò, A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine. J. Biomed. Sci. Eng. 3(6), 556–567 (2010)

    Article  Google Scholar 

  27. M.V. Spanaki, S.S. Spencer, M. Corsi, J. MacMullan, J. Seibyl, I.G. Zubal, Sensitivity and specificity of quantitative difference SPECT analysis in seizure localization. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med., 40(5), 730–736 (1999)

    Google Scholar 

  28. A. Subasi, Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Syst. Appl. 31(2), 320–328 (2006)

    Article  MathSciNet  Google Scholar 

  29. P. van Mierlo, E. Carrette, H. Hallez, R. Raedt, A. Meurs, S. Vandenberghe, D. Van Roost, P. Boon, S. Staelens, K. Vonck, Ictal-onset localization through connectivity analysis of intracranial EEG signals in patients with refractory epilepsy. Epilepsia 54(8), 1409–1418 (2007)

    Article  Google Scholar 

  30. A. Vattani, k-means requires exponentially many iterations even in the plane. Discret. Comput. Geom. 45(4), 596–616 (2011)

    Google Scholar 

  31. J. Wu, W. Sutherling, S. Koh, N. Salamon, R. Jonas, S. Yudovin, R. Sankar, W. Shields, G. Mathern, Magnetic source imaging localizes epileptogenic zone in children with tuberous sclerosis complex. Neurology 66(8), 1270–1272 (2006)

    Article  Google Scholar 

  32. G. Zhu, Y. Li, P.P. Wen, Analysing epileptic EEGs with a visibility graph algorithm, in 5th International Conference on Biomedical Engineering and Informatics (BMEI2012), Chongqing, 16–18 Oct 2012, pp. 432–436

    Google Scholar 

  33. G. Zhu, Y. Li, P.P. Wen, S. Wang, M. Xi, Epileptogenic focus detection in intracranial EEG based on delay permutation entropy. AIP Conf. Proc. 1559, 31–36 (2013)

    Article  Google Scholar 

  34. G. Zhu, Y. Li, P. Wen, S. Wang, N. Zhong, Unsupervised classification of epileptic EEG signals with multi scale K-means algorithm, in Brain and Health Informatics, Maebashi, ed. by K. Imamura, S. Usui, T. Shirao, T. Kasamatsu, L. Schwabe, N. Zhong. Lecture Notes in Computer Science, vol. 8211 (Springer, Cham, 2013), pp. 158–167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohun Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhu, G., Li, Y., Wen, P.(., Wang, S. (2015). Classifying Epileptic EEG Signals with Delay Permutation Entropy and Multi-scale K-Means. In: Sun, C., Bednarz, T., Pham, T., Vallotton, P., Wang, D. (eds) Signal and Image Analysis for Biomedical and Life Sciences. Advances in Experimental Medicine and Biology, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-319-10984-8_8

Download citation

Publish with us

Policies and ethics