Skip to main content

Multi-complexity Ensemble Measures for Gait Time Series Analysis: Application to Diagnostics, Monitoring and Biometrics

  • Chapter
  • First Online:
Signal and Image Analysis for Biomedical and Life Sciences

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 823))

Abstract

Previously, we have proposed to use complementary complexity measures discovered by boosting-like ensemble learning for the enhancement of quantitative indicators dealing with necessarily short physiological time series. We have confirmed robustness of such multi-complexity measures for heart rate variability analysis with the emphasis on detection of emerging and intermittent cardiac abnormalities. Recently, we presented preliminary results suggesting that such ensemble-based approach could be also effective in discovering universal meta-indicators for early detection and convenient monitoring of neurological abnormalities using gait time series. Here, we argue and demonstrate that these multi-complexity ensemble measures for gait time series analysis could have significantly wider application scope ranging from diagnostics and early detection of physiological regime change to gait-based biometrics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Barclay, J. Cutting, L. Kozlowski, Temporal and spatial factors in gait perception that influence gender recognition. Percept. Psychophys. 23(2), 145–152 (1978)

    Article  Google Scholar 

  2. C. BenAbdelkader, R.G. Cutler, L.S. Davis, Gait recognition using image self-similarity. EURASIP J. Appl. Signal Process. 4, 572–585 (2004)

    Article  Google Scholar 

  3. K.M. Biglan, Y. Zhang, J.D. Long, M. Geschwind, G.A. Kang, A. Killoran, W. Lu, E. McCusker, J.A. Mills, L.A. Raymond, C. Testa, J. Wojcieszek, J.S. Paulsen, Refining the diagnosis of Huntington disease: the PREDICT-HD study. Front. Aging Neurosci. 5, 12 (2013)

    Article  Google Scholar 

  4. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, Heidelberg, 2006)

    MATH  Google Scholar 

  5. P. Bouche, N. Le Forestier, T. Maisonobe, E. Fournier, J.C. Willer, Electrophysiological diagnosis of motor neuron disease and pure motor neuropathy. J. Neurol. 246(7), 520–525 (1999)

    Article  Google Scholar 

  6. I. Bouchrika, M. Goffredo, J. Carter, M. Nixon, On using gait in forensic biometrics. J Forensic Sci. 56(4), 882–889 (2011)

    Article  Google Scholar 

  7. M. Boyle, A. Klausner, D. Starobinski, A. Trachtenberg, H. Wu, Gait-based smartphone user identification, in Proceedings of the 9th International Conference on Mobile systems, Applications, and Services (MOBISYS’11), Bethesda (2011), pp. 395–396

    Google Scholar 

  8. D.P. Breen, J.R. Evans, K. Farrell, C. Brayne, R.A. Barker, Determinants of delayed diagnosis in parkinson’s disease. J. Neurol. 260(8), 1978–1981 (2013)

    Article  Google Scholar 

  9. M. Costa, A.L. Goldberger, C.-K. Peng, Multiscale entropy analysis of biological signals. Phys. Rev. E 71, 021906 (2005)

    Article  MathSciNet  Google Scholar 

  10. S. Damouras, M.D. Chang, E. Sejdic, T. Chau, An empirical examination of detrended fluctuation analysis for gait data. Gait Posture 31, 336–340 (2010)

    Article  Google Scholar 

  11. V.V. Gavrishchaka, O. Senyukova, Robust algorithmic detection of the developed cardiac pathologies and emerging or transient abnormalities from short periods of RR data, in International Symposium on Computational Models for Life Sciences, Oct 2011, Toyama City. AIP Conference Proceedings, vol. 1371 (AIP Publishing, New York, 2011), pp. 215–224

    Google Scholar 

  12. V.V. Gavrishchaka, O. Senyukova, Robust algorithmic detection of cardiac pathologies from short periods of RR data, in Knowledge-Based Systems in Biomedicine and Computational Life Science, ed. by T.D. Pham, L.C. Jaim. Studies in Computational Intelligence, vol. 450 (Springer, Heidelberg, 2013), pp. 137–153

    Google Scholar 

  13. V. Gavrishchaka, K. Davis, O. Senyukova, Multi-complexity measures for early detection and monitoring of neurological abnormalities from gait time series, in 2013 International Symposium on Computational Models for Life Sciences (CMLS-13), Sydney, Nov 2013. AIP Conference Proceedings, vol. 1559 (AIP Publishing, New York, 2013), pp. 47–56

    Google Scholar 

  14. L. Glass, J. Milton, Dynamical Disease: Mathematical Analysis of Human Illness (AIP, New York, 1995)

    MATH  Google Scholar 

  15. J.M. Hausdorff, S.L. Mitchell, R. Firtion, C.K. Peng, M.E. Cudkowicz, J.Y. Wei, A.L. Goldberger, Altered fractal dynamics of gait: reduced stride interval correlations with aging and Huntington’s disease. J. Appl. Physiol. 82(1), 262–269 (1997)

    Google Scholar 

  16. J.M. Hausdorff, L. Zemany, C. Peng, A.L. Goldberger, Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J Appl. Physiol. 86(3), 1040–1047 (1999)

    Google Scholar 

  17. J.M. Hausdorff, A. Lertratanakul, M.E. Cudkowicz, A.L. Peterson, D. Kaliton, A.L. Goldberger, Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J. Appl. Physiol. 88, 2045–2053 (2000)

    Google Scholar 

  18. R. Jin, Y. Liu, L. Si, J. Carbonell, A.G. Hauptmann, A new boosting algorithm using input-dependent regularizer, in 20th International Conference on Machine Learning, Washington DC (AAAI, Palo Alto, 2003)

    Google Scholar 

  19. G. Johansson, Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14(2), 201–211 (1973)

    Article  Google Scholar 

  20. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  21. J. Klucken, J. Barth, P. Kugler, J. Schlachetzki, T. Henze et al., Unbiased and mobile gait analysis detects Motor Impairment in Parkinson’s disease. PLoS ONE 8(2), e56956 (2013). doi:10.1371/journal.pone.0056956

  22. D. Makowiec, A. Dudkowska, M. Zwierz, R. Galaska, A. Rynkiewicz, Scale invariant properties in heart rate signals. Acta Physica Polonica B37(5), 1627–1639 (2006)

    Google Scholar 

  23. R.N. Mantegna, Hierarchical structure in financial markets. Eur. Phys. J. B 11, 193–197 (1999)

    Article  Google Scholar 

  24. M.J.U. Novak, S.J. Tabrizi, Huntington’s disease: clinical presentation and treatment, in International Review of Neurobiology, ed. by J. Brotchie, E. Bezard, P. Jenner (Academic, Chicago, 2011), pp. 297–323

    Google Scholar 

  25. J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertesz, A. Kanto, Dynamics of market correlations: taxonomy and portfolio analysis. Phys. Rev. E 68, 056110 (2003)

    Article  Google Scholar 

  26. L. Ota, H. Uchitomi, K. Suzuki, M.J. Hove, S. Orimo, Y. Miyake, Relationship between fractal property of gait cycle and severity of Parkinson’s disease, in IEEE/SICE International Symposium on System Integration (SII), Kyoto, Dec 2011, pp. 236–239

    Google Scholar 

  27. C.-K. Peng, S. Havlin, E.H. Stanley, A.L. Goldberger, Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995)

    Article  Google Scholar 

  28. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  29. M.P. Rani, G. Arumugam, An efficient gait recognition system for human identification using modified ICA. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 2(1), 55–67 (2010)

    Google Scholar 

  30. R.E. Schapire, The Design and Analysis of Efficient Learning Algorithms (MIT, Cambridge, 1992)

    Google Scholar 

  31. R.E. Schapire, Y. Freund, Boosting: Foundations and Algorithms (MIT, Cambridge, 1992)

    Google Scholar 

  32. A.J.-E. Seely, P.T. Macklem, Complex systems and the technology of variability analysis. Crit. Care 8, 367–384 (2004)

    Article  Google Scholar 

  33. O. Senyukova, V. Gavrishchaka, Ensemble decomposition learning for optimal utilization of implicitly encoded knowledge in biomedical applications, in IASTED International Conference on Computational Intelligence and Bioinformatics, Pittsburgh (ACTA, Calgary, 2011), pp. 69–73

    Google Scholar 

  34. O. Senyukova, V. Gavrishchaka, M. Koepke, Universal multi-complexity measures for physiological state quantification in intelligent diagnostics and monitoring systems, in Proceedings of The First International Aizu Conference on Biomedical Informatics and Technology (ACBIT 2013), Sept 2013, Aizu-Wakamatsu. Communications in Computer and Information Science, vol. 404 (Springer, Heidelberg, 2013), pp. 69–83

    Google Scholar 

  35. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–1065 (1996)

    Google Scholar 

  36. S. Theodoridis, K. Koutroumbas, Pattern Recognition (Academic, Boston, 1999)

    Google Scholar 

  37. M. Tumminello, F. Lillo, R.N. Mantegna, Correlation, hierarchies, and networks in financial markets. J. Econ. Behav. Organ. 75, 40–58 (2010)

    Article  Google Scholar 

  38. A.L. Vaccarino, K. Anderson, B. Borowsky, K. Duff, J. Giuliano, M. Guttman, A.K. Ho, M. Orth, J.S. Paulsen, T. Sills, D.P. van Kammen, K.R. Evans, PREDICT-HD and REGISTRY investigators coordinators: an item response analysis of the motor and behavioral subscales of the unified huntington’s disease rating scale in huntington disease gene expansion carriers. Mov. Disord. 26(5), 877–884 (2011)

    Article  Google Scholar 

  39. A. Voss, S. Schulz, R. Schroederet, M. Baumert, P. Caminal, Methods derived from nonlinear dynamics for analysing heart rate variability. Philos. Trans. R. Soc. A 367, 277–296 (2008)

    Article  Google Scholar 

  40. D. Winter, The Biomechanics and Motor Control of Human Gait (Univesity of Waterloo Press, Waterloo, 1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy Gavrishchaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gavrishchaka, V., Senyukova, O., Davis, K. (2015). Multi-complexity Ensemble Measures for Gait Time Series Analysis: Application to Diagnostics, Monitoring and Biometrics. In: Sun, C., Bednarz, T., Pham, T., Vallotton, P., Wang, D. (eds) Signal and Image Analysis for Biomedical and Life Sciences. Advances in Experimental Medicine and Biology, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-319-10984-8_6

Download citation

Publish with us

Policies and ethics