Skip to main content

Hybrid Algorithms for Multiple Change-Point Detection in Biological Sequences

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 823))

Abstract

Array comparative genomic hybridization (aCGH) is one of the techniques that can be used to detect copy number variations in DNA sequences in high resolution. It has been identified that abrupt changes in the human genome play a vital role in the progression and development of many complex diseases. In this study we propose two distinct hybrid algorithms that combine efficient sequential change-point detection procedures (the Shiryaev-Roberts procedure and the cumulative sum control chart (CUSUM) procedure) with the Cross-Entropy method, which is an evolutionary stochastic optimization technique to estimate both the number of change-points and their corresponding locations in aCGH data. The proposed hybrid algorithms are applied to both artificially generated data and real aCGH experimental data to illustrate their usefulness. Our results show that the proposed methodologies are effective in detecting multiple change-points in biological sequences of continuous measurements.

This work was carried out when the author was at the Department of Mathematics, Mari State University, Russia

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Barry, J.A. Hartigan, A Bayesian analysis for change point problems. J. Am. Stat. Assoc. 88, 309–319 (1993)

    MATH  MathSciNet  Google Scholar 

  2. J.V. Braun, H.G. Müller, Statistical methods for DNA sequence segmentation. Stat. Sci. 13, 142–162 (1998)

    Article  MATH  Google Scholar 

  3. N.P. Carter, Methods and strategies for analyzing copy number variation using DNA microarrays. Nat. Genet. 39, S16–S21 (2007)

    Article  Google Scholar 

  4. A, Costa, O.D. Jones, D. Kroese, Convergence properties of the cross-entropy method for discrete optimization. Oper. Res. Lett. 35, 573–580 (2007)

    Google Scholar 

  5. B. Efron, T. Hastie, I. Johnstone, R. Tibshirani. Least angle regression. Ann. Stat. 32, 407–451 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Erdman, J.W. Emerson, bcp: an R package for performing a Bayesian analysis of change point problems. J. Stat. Softw. 23, 1–13 (2007)

    Google Scholar 

  7. C. Erdman, J.W. Emerson, A fast Bayesian change point analysis for the segmentation of microarray data. Bioinformatics 24(19), 2143–2148 (2008)

    Article  Google Scholar 

  8. G.E. Evans, G.Y. Sofronov, J.M. Keith, D.P. Kroese, Identifying change-points in biological sequences via the cross-entropy method. Ann. Oper. Res. 189, 155–165 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Feuk, A.R. Carson, S.W. Scherer, Structural variation in the human genome. Nat. Rev. Genet. 7(2), 85–97 (2006)

    Article  Google Scholar 

  10. D.C. Hoaglin, F. Mosteller, J.W. Tukey, Understanding Robust and Exploratory Data Analysis (Wiley, New York, 1983)

    MATH  Google Scholar 

  11. G. Hodgson, J.H. Hager, S. Volik, S. Hariono, M. Wernick, D. Moore, N. Nowak, D.G. Albertson, D. Pinkel, C. Collins, D. Hanahan, J.W. Gray, Genome scanning with array CGH delineates regional alterations in mouse islet carcinomas. Nat. Genet. 29, 459–464 (2001)

    Article  Google Scholar 

  12. S. Ivakhno, T. Royce, A.J. Cox, D.J. Evers, R.K. Cheetham, S. Tavare, CNAseg-a novel framework for identification of copy number changes in cancer from second-generation sequencing data. Bioinformatics. 26, 3051–3058 (2010)

    Article  Google Scholar 

  13. V.E. Johnson, Revised standards for statistical evidence. Proc. Natl. Acad. Sci. (2013). doi:10.1073/pnas.1313476110

    Google Scholar 

  14. A. Kallioniemi, O.P. Kallioniemi, D. Sudar, D. Rutovitz, J.W. Gray, F. Waldman, D. Pinkel, Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258, 818–821 (1992)

    Article  Google Scholar 

  15. J.M. Keith, Segmenting eukaryotic genomes with the generalized Gibbs sampler. J. Comput. Biol. 13, 1369–1383 (2006)

    Article  MathSciNet  Google Scholar 

  16. R. Killick, I. Eckley, changepoint: an R package for changepoint analysis. R package version 1.1. (2013). http://CRAN.R-project.org/package=changepoint

  17. R. Killick, P. Fearnhead, I. Eckley, Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107, 590–598 (2012)

    Article  MathSciNet  Google Scholar 

  18. S. Kullback, R.A. Leibler, On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  19. W.R. Lai, M.D. Johnson, R. Kucherlapati, P.J. Park, Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics 21, 3763–3770 (2005)

    Article  Google Scholar 

  20. R. Lucito, J. Healy, J. Alexander, A. Reiner, D. Esposito, M. Chi, L. Rodgers, A. Brady, J. Sebat, J. Troge, J.A. West, S. Rostan, K.C.Q. Nguyen, S. Powers, K.Q. Ye, A. Olshen, E. Venkatraman, L. Norton, M. Wigler, Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 13, 2291–2305 (2003)

    Article  Google Scholar 

  21. V.M.R. Muggeo, cumSeg: change point detection in genomic sequences. R package version 1.1. (2012). http://CRAN.R-project.org/package=cumSeg

  22. M.R.V. Muggeo, G. Adelfio, Efficient change point detection for genomic sequences of continuous measurements. Bioinformatics 27, 161–166 (2011)

    Article  Google Scholar 

  23. J. Oliver, P. Bernaola-Galvan, P. Carpena, R. Roman-Roldan, Isochore chromosome maps of eukaryotic genomes. Gene 276(1–2), 47–56 (2001)

    Article  Google Scholar 

  24. A.B. Olshen, E.S. Venkatraman, R. Lucito, M. Wigler, Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics, 5, 557–572 (2004)

    Article  MATH  Google Scholar 

  25. E.S. Page, Continuous inspection schemes. Biometrika 41, 100–115 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  26. J.R. Pollack, C.M. Perou, A.A. Alizadeh, M.B. Eisen, A. Pergamenschikov, C.F. Williams, S.S. Jeffrey, D. Botstein, P.O. Brown, Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat. Genet. 23(1), 41–46 (1999)

    Article  Google Scholar 

  27. J.R. Pollack, T. Sørlie, C.M. Perou, C.A. Rees, S.S. Jeffrey, P.E. Lonning, R. Tibshirani, D. Bo, D. Botstein, A.L. Børresen-Dale, P.O. Brown, Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc. Natl. Acad. Sci. U.S.A. 99, 12963–12968 (2002)

    Article  Google Scholar 

  28. M. Pollak, A.G. Tartakovsky, Exact optimality of the Shiryaev-Roberts procedure for detecting changes in distributions, in Information Theory and its Applications, ISITA 2008 International Symposium, Auckland (2008), pp. 1–6

    Google Scholar 

  29. M. Pollak, A.G. Tartakovsky, Optimality properties of the Shiryaev-Roberts procedure. Statistica Sinica 19, 1729–1739 (2009)

    MATH  MathSciNet  Google Scholar 

  30. A. Polunchenko, G. Sokolov, W. Du, Quickest change-point detection: a bird’s eye view, in Joint Statistical Meeting (JSM), Montreal (2013)

    Google Scholar 

  31. T. Polushina, G. Sofronov, Change-point detection in biological sequences via genetic algorithm, in Proceedings IEEE Congress on Evolutionary Computation (CEC), New Orleans (2011), pp. 1966–1971

    Google Scholar 

  32. T.V. Polushina, G.Y. Sofronov, A hybrid genetic algorithm for change-point detection in binary biomolecular sequences, in Proceedings of the IASTED International Conference on Artificial Intelligence and Applications (AIA 2013), Innsbruck (2013), pp. 1–8

    Google Scholar 

  33. W.J.R.M. Priyadarshana, G. Sofronov, A modified cross entropy method for detecting multiple change points in DNA Count Data, in WCCI 2012 IEEE World Congress on Computational Intelligence (CEC), Brisbane (2012), pp. 1020–1027

    Google Scholar 

  34. W.J.R.M. Priyadarshana, G. Sofronov, GAMLSS and extended cross-entropy method to detect multiple change-points in DNA read count data, in Proceedings of the 28th International Workshop on Statistical Modelling, Palermo, vol. 1, ed. by V.M.R. Muggeo, V. Capursi, G. Boscaino, G. Lovison (2013), pp. 453–457

    Google Scholar 

  35. W.J.R.M. Priyadarshana, T. Polushina, G. Sofronov, A hybrid algorithm for multiple change-point detection in continuous measurements, in International Symposium on Computational Models for Life Sciences, Sydney, ed. by C. Sun, T. Bednarz, T.D. Pham, P. Vallotton, D. Wang. AIP Conference Proceedings (2013), pp. 108–117

    Google Scholar 

  36. R Core Team:R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2013), http://www.R-project.org/

  37. S.W. Roberts, A comparison of some control chart procedures. Technometrics 8, 411–430 (1966)

    Article  MathSciNet  Google Scholar 

  38. R. Rubinstein, D.P. Kroese, The Cross-Entropy Method: a Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning (Springer, New York, 2004)

    Book  Google Scholar 

  39. G. Schwarz, Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    Article  MATH  Google Scholar 

  40. J. Sebat, B. Lakshmi, J. Troge, J. Alexander, J. Young, P. Lundin, S. Maner, H. Massa, M. Walker, M. Chi, N. Navin, R. Lucito, J. Healy, J. Hicks, K. Ye, A. Reiner, T.C. Gilliam, B. Trask, N. Patterson, A. Zetterberg, M. Wigler. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004)

    Article  Google Scholar 

  41. A. Sen, M. Srivastava, On tests for detecting a change in mean. Ann. Stat. 3, 98–108 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  42. A.N. Shiryaev, The problem of the most rapid detection of a disturbance in a stationary process. Soviet Mathmatics. Dokl. 2, 795–799 (1961)

    MATH  Google Scholar 

  43. A.N. Shiryaev, On optimum methods in quickest detection problems. Theory Probab. Appl. 8, 22–46 (1963)

    Article  MATH  Google Scholar 

  44. A.N. Shiryaev, Optimal Stopping Rules (Springer, New York, 1978)

    MATH  Google Scholar 

  45. R.J. Simes, An improved Bonferroni procedure for multiple tests of significance. Biometrika 73, 751–754 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  46. A.M. Snijders, N. Nowak, R. Segraves, S. Blackwood, N. Brown, J. Conroy, G. Hamilton, A.K. Hindle, B. Huey, K. Kimura, S. Law, K. Myamboo, J. Palmer, B. Ylstra, J.P. Yue, J.W. Gray, A.N. Jain, D. Pinkel, D.G. Albertson, Assembly of microarrays for genome-wide measurement of DNA copy number. Nat. Genet. 29, 263–264 (2001)

    Article  Google Scholar 

  47. G. Sofronov, Change-point modelling in biological sequences via the Bayesian adaptive independent sampler. Int. Proc. Comput. Sci. Inf. Technol. 5, 122–126 (2011)

    Google Scholar 

  48. G.Y. Sofronov, G.E. Evans, J.M. Keith, D.P. Kroese, Identifying change-points in biological sequences via sequential importance sampling. Environ. Model. Assess. 14, 577–584 (2009)

    Article  Google Scholar 

  49. G. Sofronov, T. Polushina, W.J.R.M. Priyadarshana, Sequential change-point detection via the cross-entropy method, in The 11th Symposium on Neural Network Applications in Electrical Engineering (NEUREL’12), Belgrade (2012), pp. 185–188

    Google Scholar 

  50. A. Subramanian, H. Kuehn, J. Gould, P. Tamayo, J.P. Mesirov, GSEA-P: a desktop application for Gene set enrichment analysis. Bioinformatics 23, 3251–3253 (2007)

    Article  Google Scholar 

  51. A. Theisen, Microarray-based comparative genomic hybridization (aCGH). Nat. Educ. 1(1), 45 (2008)

    Google Scholar 

  52. R. Tibshirani, P. Wang, Spatial smoothing and hot spot detection for CGH data using the fused lasso. Biostatistics 9, 18–29 (2008)

    Article  MATH  Google Scholar 

  53. E.S. Venkatraman, A. Olshen, DNAcopy: DNA copy number data analysis. R package version 1.34.0 (2013)

    Google Scholar 

  54. H. Wang, B. Li, C. Leng, Shrinkage tuning parameter selection with a diverging number of parameters. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 71, 671–683 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  55. C. Xie, M.T. Tammi, CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics 10, 80 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

W. J. R. M. Priyadarshana acknowledges the funding received towards his PhD from the International Macquarie University Research Excellence (iMQRES) scholarship. The authors acknowledge the anonymous referees for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madawa Priyadarshana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Priyadarshana, M., Polushina, T., Sofronov, G. (2015). Hybrid Algorithms for Multiple Change-Point Detection in Biological Sequences. In: Sun, C., Bednarz, T., Pham, T., Vallotton, P., Wang, D. (eds) Signal and Image Analysis for Biomedical and Life Sciences. Advances in Experimental Medicine and Biology, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-319-10984-8_3

Download citation

Publish with us

Policies and ethics