Skip to main content

Development of Magnesium Alloy Scaffolds to Support Biological Myocardial Grafts: A Finite Element Investigation

  • Chapter
  • First Online:
Biomedical Technology

Abstract

Lesioned myocardial tissue can be replaced with innovative biological grafts. However, the strength of most biological grafts is initially not sufficient for left ventricular applications. Implants that mechanically support these grafts and gradually lose their function as the graft develops its strength are a possible solution. We are developing magnesium alloy scaffolds for this purpose. The finite element method was used to perform simulations wherein scaffolds are deformed according to the heart movement. This allows us to identify highly stressed regions within the implant that need design changes. Preformed scaffolds were determined to have significantly lower stresses in comparison to flat ones. The method of tensile triangles suggests shape changes for notable stress reduction. Furthermore, new scaffold shapes were developed and simulated. Two of them are recommended for further examinations through in vitro and in vivo tests. A completely new alternative scaffold concept is also proposed.

F.-W. Bach—Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Computer Aided Engineering.

  2. 2.

    Computer Aided Design.

References

  1. Athanasuleas, C.L., Stanley, A.W., Buckberg, G.D., et al.: Surgical anterior ventricular endocardial restoration (SAVER) in the dilated remodeled ventricle after anterior myocardial infarction. RESTORE group. Reconstructive Endoventricular Surgery, returning Torsion Original Radius Elliptical Shape to the LV. J. Am. Coll. Cardiol. 37(5), 1199–1209 (2001)

    Article  Google Scholar 

  2. Cooley, D.A.: Ventricular endoaneurysmorrhaphy: results of an improved method of repair. Tex. Heart Inst. J. 16(2), 72–75 (1989)

    MathSciNet  Google Scholar 

  3. Dor, V.: Surgery for left ventricular aneurysm. Curr. Opin. Cardiol. 5(6), 773–780 (1990)

    Article  Google Scholar 

  4. Adhyapak, S.M., Parachuri, V.R.: Architecture of the left ventricle: insights for optimal surgical ventricular restoration. Heart Fail. Rev. 15(1), 73–83 (2010)

    Article  Google Scholar 

  5. Anderson, R.H., Ho, S.Y., Redmann, K., et al.: The anatomical arrangement of the myocardial cells making up the ventricular mass. Eur. J. Cardiothorac. Surg. 28(4), 517–525 (2005)

    Article  Google Scholar 

  6. Williams, A.R., Hatzistergos, K.E., Addicott, B., et al.: Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127(2), 213–223 (2013)

    Article  Google Scholar 

  7. Schilling, T., Cebotari, S., Tudorache, I., et al.: Tissue engineering of vascularized myocardial prosthetic tissue. Chirurg 82(4), 319–324 (2011). in German

    Article  Google Scholar 

  8. Badylak, S.F.: The extracellular matrix as a scaffold for tissue reconstruction. Semin. Cell Dev. Biol. 13(5), 377–383 (2002)

    Article  Google Scholar 

  9. Wei, H., Liang, H., Lee, M., et al.: Construction of varying porous structures in acellular bovine pericardia as a tissue-engineering extracellular matrix. Biomaterials 26(14), 1905–1913 (2005)

    Article  Google Scholar 

  10. Taheri, S.A., Ashraf, H., Merhige, M., et al.: Myoangiogenesis after cell patch cardiomyoplasty and omentopexy in a patient with ischemic cardiomyopathy. Tex Heart Inst. J. 32(4), 598–601 (2005)

    Google Scholar 

  11. Wang, B., Borazjani, A., Tahai, M., et al.: Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J. Biomed. Mater. Res. 94(4), 1100–1110 (2010)

    Google Scholar 

  12. Tudorache, I., Kostin, S., Meyer, T., et al.: Viable vascularized autologous patch for transmural myocardial reconstruction. Eur. J. Cardiothorac. Surg. 36(2), 306–311 (2009)

    Article  Google Scholar 

  13. Badylak, S.F., Kochupura, P.V., Cohen, I.S., et al.: The use of extracellular matrix as an inductive scaffold for the partial replacement of functional myocardium. Cell Transplant. 15(Suppl 1), 29–40 (2006)

    Article  Google Scholar 

  14. Wiltfang, J., Merten, H.A., Schlegel, K.A., et al.: Degradation characteristics of \({\alpha }\) and \({\beta }\) tri-calcium-phosphate (TCP) in minipigs. J. Biomed. Mater. Res. 63(2), 115–121 (2002)

    Article  Google Scholar 

  15. Nair, L.S., Laurencin, C.T.: Biodegradable polymers as biomaterials. Prog. Polym. Sci.32(8–9), 762–798 (2007)

    Google Scholar 

  16. Pietrzak, W.S., Sarver, D., Verstynen, M.: Bioresorbable implants – practical considerations. Bone 19(1), 109–119 (1996)

    Article  Google Scholar 

  17. van der Giessen, W.J., Lincoff, A.M., Schwartz, R.S., et al.: Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94(7), 1690–1697 (1996)

    Article  Google Scholar 

  18. Atrens, A., Song, G., Cao, F., et al.: Advances in Mg corrosion and research suggestions. J. Magnes. Alloy. 1(3), 177–200 (2013)

    Google Scholar 

  19. Witte, F., Hort, N., Vogt, C., et al.: Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 12(5–6), 63–72 (2008)

    Article  Google Scholar 

  20. Kirkland, N., Lespagnol, J., Birbilis, N., et al.: A survey of bio-corrosion rates of magnesium alloys. Corros. Sci. 52(2), 287–291 (2010)

    Article  Google Scholar 

  21. Staiger, M.P., Pietak, A.M., Huadmai, J., et al.: Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9), 1728–1734 (2006)

    Article  Google Scholar 

  22. Bach, F., Haverich, A., Cebotari. S., Biskup, C., Schuster, B.: Supporting element for tissue implants (Patent WO 2011/101142 A1)

    Google Scholar 

  23. Walker, J., Shadanbaz, S., Woodfield, T.B.F., et al.: The in vitro and in vivo evaluation of the biocompatibility of Mg alloys. Biomed. Mater. 9(1), 15006 (2014)

    Article  Google Scholar 

  24. Schilling, T., Brandes, G., Tudorache, I., et al.: In vivo degradation of magnesium alloy LA63 scaffolds for temporary stabilization of biological myocardial grafts in a swine model. BiomedizinischeTechnik/Biomedical Engineering 58(5), 407–416 (2013)

    Google Scholar 

  25. Bauer, M., Schilling, T., Weidling, M., et al.: Geometric adaption of biodegradable magnesium alloy scaffolds to stabilise biological myocardial grafts, Part I. J. Mater. Sci. Mater. Med. 25(3), 909–916 (2014)

    Article  Google Scholar 

  26. Bonora, P., Andrei, M., Eliezer, A., et al.: Corrosion behaviour of stressed magnesium alloys. Corros. Sci. 44(4), 729–749 (2002)

    Article  Google Scholar 

  27. Hoffmeister, B.K., Handley, S.M., Wickline, S.A., et al.: Ultrasonic determination of the anisotropy of Young’s modulus of fixed tendon and fixed myocardium. J. Acoust. Soc. Am. 100(6), 3933–3940 (1996)

    Article  Google Scholar 

  28. Weidling, M., Besdo, S., Schilling, T., et al.: Finite element simulation of myocardial stabilising structures and development of new designs. Biomedical Engineering/BiomedizinischeTechnik. 58 (Suppl. 1)(2013)

    Google Scholar 

  29. Biskup, C., Hepke, M., Grittner, N., et al.:AWIJ cutting of structures made of magnesium alloys for the cardiovascular surgery. In: American WJTA Conference and Expo (2009)

    Google Scholar 

  30. Mattheck, C.: Secret Design Rules of Nature. Überw. Ill, 1st edn. Forschungszentrum Karlsruhe, Karlsruhe (2007)

    Google Scholar 

  31. Feng, B., Veress, A., Sitek, A., et al.: Estimation of mechanical properties from gated SPECT and cine MRI data using a finite-element mechanical model of the left ventricle. IEEE Trans. Nucl. Sci. 48(3), 725–733 (2001)

    Article  Google Scholar 

  32. Feng, L., Weixue, L., Ling, X., et al.: The construction of three-dimensional composite finite element mechanical model of human left ventricle. JSME Int. J. Ser C 44(1), 125–133 (2001)

    Article  Google Scholar 

  33. Wong, J., Kuhl, E.: Generating fibre orientation maps in human heart models using Poisson interpolation. Comput. Methods Biomech. Biomed. Eng.: 1–10 (2012)

    Google Scholar 

  34. Watanabe, H., Sugiura, S., Kafuku, H., et al.: Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Biophys. J. 87(3), 2074–2085 (2004)

    Article  Google Scholar 

  35. Song, G., Atrens, A.: Recent insights into the mechanism of magnesium corrosion and research suggestions. Adv. Eng. Mater. 9(3), 177–183 (2007)

    Article  Google Scholar 

  36. Winzer, N., Atrens, A., Song, G., et al.: A critical review of the stress corrosion cracking (SCC) of Magnesium alloys. Adv. Eng. Mater. 7(8), 659–693 (2005)

    Article  Google Scholar 

  37. Tokaji, K., Kamakura, M., Ishiizumi, Y., et al.: Fatigue behaviour and fracture mechanism of a rolled AZ31 Magnesium alloy. Int. J. Fatigue 26(11), 1217–1224 (2004)

    Article  Google Scholar 

  38. Mayer, H., Papakyriacou, M., Zettl, B., et al.: Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys. Int. J. Fatigue 25(3), 245–256 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the German Research Foundation (DFG) for their financial support. This project is funded within the Collaborative Research Center 599 (SFB 599) and the International Research Training Group 1627 (GRK 1627). Furthermore, we thank Martina Baldrich who developed scaffold shape 7 and Julian Schrader who developed shapes 8–12 in student projects, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Weidling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weidling, M. et al. (2015). Development of Magnesium Alloy Scaffolds to Support Biological Myocardial Grafts: A Finite Element Investigation. In: Lenarz, T., Wriggers, P. (eds) Biomedical Technology. Lecture Notes in Applied and Computational Mechanics, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-10981-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10981-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10980-0

  • Online ISBN: 978-3-319-10981-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics