Skip to main content

Detection of Human Emotions Using Features Based on the Multiwavelet Transform of EEG Signals

  • Chapter
  • First Online:

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 74))

Abstract

Emotion classification based on electroencephalogram (EEG) signals is a relatively new area of research in the development of brain computer interface (BCI) system with challenging issues like induction of the emotional states and the extraction of the features in order to obtain optimum classification of human emotions. The emotion classification system based on BCI can be useful in many areas like as entertainment, education, and health care. This chapter presents a new method for human emotion classification using multiwavelet transform of EEG signals. The EEG signal contains useful information related to the different emotional states, which helps us to understand the psychology and neurology of the human brain. The features namely, ratio of the norms based measure, Shannon entropy measure, and normalized Renyi entropy measure are computed from the sub-signals generated by multiwavelet decomposition of EEG signals. These features have been used as an input to multiclass least squares support vector machine (MC-LS-SVM) together with the radial basis function (RBF), Mexican hat wavelet, and Morlet wavelet kernel functions for classification of human emotions from EEG signals. The classification performance of the proposed method for classification of emotions using EEG signals determined by computing the classification accuracy, ten-fold cross-validation, and confusion matrix. The proposed method has provided classification accuracy of 84.79 % for classification of human emotions namely happy, neutral, sadness, and fear from EEG signals with Morlet wavelet kernel function of MC-LS-SVM. The audio–video stimulus has been used for inducing the emotions in EEG signals. The experimental results are presented to show the effectiveness of the proposed method for classification of human emotions from EEG signals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Azar, A.T., Balas, V.E., Olariu, T.: Classification of EEG-based brain-computer interfaces. Adv. Intell. Comput. Technol. Decis. Support Syst. Stud. Comput. Intell. 486(2014), 97–106 (2014). doi:10.1007/978-3-319-00467-9-9

    Google Scholar 

  2. Murugappan, M., Rizon, M., Nagarajan, R., Yaacob, S.: Inferring of human emotional states using multichannel EEG. Eur. J. Sci. Res. 48(2), 281–299 (2010)

    Google Scholar 

  3. Smith, M.J.L., Montagne, B., Perrett, D.I., Gill, M., Gallaghser, L.: Detecting subtle facial emotion recognition deficits in high functioning autism using dynamic stimuli of varying intensities. Neuropsychologia 48(9), 2777–2781 (2010)

    Article  Google Scholar 

  4. Vera-Munoz, C., Pastor-Sanz, L., Fico, G., Arredondo, M.T., Benuzzi, F., Blanco, A.: A wearable EMG monitoring system for emotions assessment. Probing Experience Philips Res. 8, 139–148 (2008)

    Article  Google Scholar 

  5. Essa, I.A., Pentland, A.P.: Coding analysis interpretation and recognition of facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 757–763 (1997)

    Article  Google Scholar 

  6. Nwe, T.L., Foo, S.W., Silva, L.D.: Speech emotion recognition using hidden Markov models. Speech Commun. 41(4), 603–623 (2003)

    Article  Google Scholar 

  7. Ekman, P., Levenson, R.W., Freison, W.V.: Autonomic nervous system activity distinguishes among emotions. Science 221(4616), 1208–1210 (1983)

    Article  Google Scholar 

  8. Winton, W.M., Putnam, L., Krauss, R.: Facial and autonomic manifestations of the dimensional structure of emotion. J. Exp. Soc. Psychol. 20(3), 195–216 (1984)

    Article  Google Scholar 

  9. Sander, D., Grandjean, D., Scherer, K.R.: A systems approach to appraisal mechanisms in emotion. Neural Netw. 18(4), 317–352 (2005)

    Article  Google Scholar 

  10. Baumgartner, T., Esslen, M., Jancke, L.: From emotion perception to emotion experience: emotions evoked by pictures and classical music. Int. J. Psychophysiol. 60(1), 34–43 (2006)

    Article  Google Scholar 

  11. Davidson, R.J.: Anterior cerebral asymmetry and the nature of emotion. Brain Cogn. 20(1), 125–151 (1992)

    Article  Google Scholar 

  12. Petrides, M., Milner, B.: Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia 20(3), 249–262 (1982)

    Article  Google Scholar 

  13. Sobotka, S.S., Davidson, R.J., Senulis, J.A.: Anterior brain electrical asymmetries in response to reward and punishment. Electroencephalogr. Clin. Neurophysiol. 83(4), 236–247 (1997)

    Article  Google Scholar 

  14. Garcia O., Favela J., Machorro R.: Emotional awareness in collaborative systems. In: IEEE Proceedings on String Processing and Information Retrieval Symposium, pp. 296–303. Cancun, 22–24 Sep 1999. doi: 10.1109/SPIRE.1999.796607

  15. Picard, R.W.: Toward machines with emotional intelligence. In: Matthews, G., Zeidner, M., Roberts, R.D. (eds.) The Science of Emotional Intelligence: Knowns and Unknowns. Oxford University Press, Oxford (2007)

    Google Scholar 

  16. Plutchik, R., Kellerman, H.: Emotion theory research and experience. New York Academic Press, New York (1980)

    Google Scholar 

  17. Olofsson, J.K., Nordin, S., Sequeira, H., Polich, J.: Affective picture processing: an integrative review of ERP findings. Biol. Psychol. 77(3), 247–265 (2008)

    Google Scholar 

  18. Codispoti, M., Ferrari, V., Bradley, M.M.: Repetition and event-related potentials: distinguishing early and late processes in affective picture perception. J. Cogn. Neurosci. 19(4), 577–586 (2007)

    Article  Google Scholar 

  19. Olofsson, J.K., Polich, J.: Affective visual event-related potentials: arousal, repetition, and time-on-task. Biol. Psychol. 75(1), 101–108 (2007)

    Article  Google Scholar 

  20. Bernat, E., Bunce, S., Shevrin, H.: Event-related brain potentials differentiate positive and negative mood adjectives during both supraliminal and subliminal visual processing. Int. J. Psychophysiol. 42(1), 11–34 (2001)

    Article  Google Scholar 

  21. Cuthbert, B.N., Schu, H.T., Bradley, M.M., Birbaumer, N., Lang, P.J.: Brain potentials in affective picture processing: covariation with automic arousal and affective report. Biol. Psychol. 52(2), 95–111 (2000)

    Article  Google Scholar 

  22. Blankertz, B., Lemm, S., Treder, M., Haufe, S., Muller, K.R.: Single-trial analysis and classification of ERP components-a tutorial. NeuroImage 56(2), 814–825 (2011)

    Article  Google Scholar 

  23. Jarchi, D., Sanei, S., Principe, J.C., Makkiabadi, B.: A new spatiotemporal filtering method for single-trial estimation ofcorrelated ERP subcomponents. IEEE Trans. Biomed. Eng. 58(1), 132–143 (2011)

    Article  Google Scholar 

  24. Vanderperren, K., Mijovic, B., Novitskiy, N., Vanrumste, B., Stiers, P., Van den Bergh, B.R., Lagae, L., Sunaert, S., Wagemans, J., Van Huffel, S., De Vos, M.: Single trial ERP reading based on parallel factor analysis. Psychophysiology 50(1), 97–110 (2013)

    Article  Google Scholar 

  25. Balconi, M., Lucchiari, C.: EEG correlates (event-related desynchronization) of emotional face elaboration: a temporal analysis. Neurosci. Lett. 392(1–2), 118–123 (2006)

    Article  Google Scholar 

  26. Balconi, M., Mazza, G.: Brain oscillations and BIS/BAS (behavioral inhibition/activation system) effects on processing masked emotional cues ERS/ERD and coherence measures of alpha band. Int. J. Psychophysiol. 74(2), 158–165 (2009)

    Article  Google Scholar 

  27. Gotlib, I.H., Ranganath, C., Rosenfeld, J.P.: Frontal EEG alpha asymmetry, depression, and cognitive functioning. Cogn. Emot. 12(3), 449–478 (1998)

    Article  Google Scholar 

  28. Keil, A., Muller, M.M., Gruber, T., Wienbruch, C., Stolarova, M., Elbert, T.: Effects of emotional arousal in the cerebral hemispheres: a study of oscillatory brain activity and event related potentials. Clin. Neurophysiol. 112(11), 2057–2068 (2001)

    Article  Google Scholar 

  29. Muller, M.M., Keil, A., Gruber, T., Elbert, T.: Processing of affective pictures modulates right-hemispheric gamma band EEG activity. Clin. Neurophysiol. 110(11), 1913–1920 (1999)

    Article  Google Scholar 

  30. Aftanas, L.I., Golocheikine, S.A.: Non-linear dynamic complexity of the human EEG during meditation. Nerurosci. Lett. 330(2), 143–146 (2002)

    Article  Google Scholar 

  31. Aftanas, L.I., Reva, N.V., Varlamov, A.A., Pavlov, S.V., Makhnev, V.P.: Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics. Neurosci. Behav. Physiol. 34(8), 859–867 (2004)

    Article  Google Scholar 

  32. Aftanas, L.I., Varlamov, A.A., Pavlov, S.V., Makhnev, V.P., Reva, N.V.: Affective picture processing: event-related synchronization within individually defined human theta band is modulated by valence dimension. Neurosci. Lett. 303(2), 115–118 (2001)

    Article  Google Scholar 

  33. Bos D.O.: EEG-based emotion recognition. The Influence of Visual and Auditory Stimuli, 1–17 (2006)

    Google Scholar 

  34. Schaaff, K., Schultz, T.: Towards an EEG-based emotion recognizer for humanoid robots. In: The 18th IEEE International Symposium on Robot and Human Interactive Communication, pp. 792–796. Toyama, 27 Sept.-2 Oct. 2009. doi: 10.1109/ROMAN.2009.5326306

  35. Murugappan, M., Rizon, M., Nagarajan, R., Yaacob, S., Hazry, D., Zunaidi, I.: Time-frequency analysis of EEG signals for human emotion detection. In: 4th Kuala Lumpur International Conference on Biomedical Engineering, pp. 262–265. Kuala Lumpur, Malaysia, 25–28 June 2008. doi: 10.1007/978-3-540-69139-6-68

  36. Chanel G., Ansari-Asl K., Pun T.: Valence-arousal evaluation using physiological signals in an emotion recall paradigm. In: IEEE International Conference on Systems, Man and Cybernetics Montreal Que, pp. 2662–2667, 7–10 Oct. 2007. doi: 10.1109/ICSMC.2007.4413638

  37. Hosseini, S.A., Khalilzadeh, M.A., Changiz, S.: Emotional stress recognition system for affective computing based on bio-signals. J. Biol. Syst. 18(1), 101–114 (2010)

    Article  Google Scholar 

  38. Kim, K.H., Bang, S.W., Kim, S.R.: Emotion recognition system using short-term monitoring of physiological signals. Med. Biol. Eng. Comput. 42(3), 419–427 (2004)

    Article  Google Scholar 

  39. Takahashi, K.: Remarks on emotion recognition from bio-potential signals. In: 2nd International Conference on Automous Robots and Agents, pp. 186–191. Palmerston North, New Zealand, 13–15 Dec. 2004

    Google Scholar 

  40. Murugaan, M., Nagarajan, R., Yaacob, S.: Appraising human emotions using time frequency analysis based EEG alpha band features. In: Invative Techlogies in Intelligent Systems and Industrial Applications, pp. 70–75. Monash, 25–26 July 2009. doi: 10.1109/CITISIA.2009.5224237

  41. Petrantonakis, P.C., Hadjileontiadis, L.J.: Adaptive emotional information retrieval from EEG signals in the time-frequency domain. IEEE Trans. Signal Process. 60(5), 2604–2616 (2012)

    Article  MathSciNet  Google Scholar 

  42. Knyazev, G.G.: Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci. Biobehav. Rev. 31(3), 377–395 (2007)

    Article  MathSciNet  Google Scholar 

  43. Choppin A.: EEG-based human interface for disabled individuals: emotion expression with neural networks. Master thesis, Information processing, Tokyo Institute of Technology, Yokohama, Japan (2000)

    Google Scholar 

  44. Chanel G., Kronegg J., Grandjean D., Pun T.: Emotion assessment arousal evaluation using EEG’s and peripheral physiological signals. In: Gunsel, B., Tekalp, AM., Jain, AK., Sankur, B. (eds.) Multimedia Content Representation Classification and Security Springer Lectures Notes in Computer Sciences 4105, pp. 530–537 (2006). doi: 10.1007/11848035-70

  45. Khosrowabadi, R., Rahman, A.W.A.: Classification of EEG correlates on emotion using features from Gaussian mixtures of EEG spectrogram. In: International Conference on Information and Communication Technology for the Muslim World, pp. E102–E107. Jakarta, 13–14 Dec. 2010. doi: 10.1109/ICT4M.2010.5971942

  46. Lin, Y.P., Jung, T.P., Chen, J.H.: EEG dynamics during music appreciation. In: 31st Annual International Conference of the IEEE EMBS, pp. 5316-5319. Minneapolis, MN, USA, 3–6 Sept. 2009. doi: 10.1109/IEMBS.2009.5333524

  47. Ishino, K., Hagiwara, M.: A feeling estimation system using a simple electroencephalograph. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 4204–4209, 5–8 Oct. 2003. doi: 10.1109/ICSMC.2003.1245645

  48. Rani, P., Liu, C., Sarkar, N., Vanman, E.: An empirical study of machine learning techniques for affect recognition in human-robot interaction. Pattern Anal. Appl. 9(1), 58–69 (2006)

    Article  Google Scholar 

  49. Liu, C., Agrawal, P., Sarkar, N., Chen, S.: Dynamic difficulty adjustment in computer games through real-time anxiety-based affective feedback. Int. J. Hum. Compu. Interac. 25(6), 506–529 (2009)

    Article  Google Scholar 

  50. Mandryk, R.L., Atkins, M.S.: A fuzzy physiological approach for continuously modeling emotion during interaction with play technologies. Int. J. Hum Comput Stud. 65(4), 329–347 (2007)

    Article  Google Scholar 

  51. Chanel G., Rebetez C., Bétrancourt M., Pun T.: Boredom, engagement and anxiety as indicators for adaptation to difficulty in games. In: Proceedings of the 12th International Conference on Entertainment Media Ubiquitous Era (MindTrek ‘08), pp. 13–17 (2008). doi: 10.1145/1457199.1457203

  52. Khosrowabadi, R., Heijnen, M., Wahab, A., Quek, H.C.: The dynamic emotion recognition system based on functional connectivity of brain regions. In: IEEE Intelligent Vehicles Symposium, pp. 377–381. San Diego, 21–24 June 2010. doi: 10.1109/IVS.2010.5548102

  53. Petersen, M., Stahlhut, C., Stopczynski, A., Larsen, J., Hansen, L.: Smartphones get emotional: mind reading images and reconstructing the neural sources. Affective Computing and Intelligent Interaction, volume 6975 of Lecture Notes in Computer Science, pp. 578–587. Springer, Berlin (2011). doi: 10.1007/978-3-642-24571-8-72

  54. Horlings, R., Datcu, D., Rothkrantz, L.J.M.: Emotion recognition using brain activity. In: Proceedings of the 9th International Conference on Computer Systems and Technologies and Workshop for PhD Students in Computing, pp. 1–6 (2008). doi: 10.1145/1500879.1500888

  55. Hjorth, B.: EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 29(3), 306–310 (1970)

    Article  Google Scholar 

  56. Aftanas, L.I., Lotova, N.V., Koshkarov, V.I., Pokrovskaja, V.L., Popov, S.A., Makhnev, V.P.: Non-linear analysis of emotion EEG: calculation of Kolmogorov entropy and the principal Lyapunov exponent. Neurosci. Lett. 226(1), 13–16 (1997)

    Article  Google Scholar 

  57. Boostani, R., Moradi, M.H.: A new approach in the BCI research based on fractal dimension as feature and Adaboost as classifier. J. Neural Eng. 1(4), 212–217 (2004)

    Article  Google Scholar 

  58. Hoseingholizade, S., Golpaygani, M.R.H., Monfared, A.S.: Studying emotion through nonlinear processing of EEG. In: Procedia-Social and Behavioral Sciences, The 4th International Conference of Cognitive Science, vol 32, pp. 163–169 (2012)

    Google Scholar 

  59. Murugappan, M., Ramachandran, N., Sazali, Y.: Classification of human emotion from EEG using discrete wavelet transform. J. Biomed. Sci. Eng. 3(4), 390–396 (2010)

    Article  Google Scholar 

  60. Brown L., Grundlehner B., Penders J.: Towards wireless emotional valence detection from EEG. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society pp. 2188–2191. Boston, MA, 30 Aug.-3 Sept. 2011. doi: 10.1109/IEMBS.2011.6090412

  61. Hosseini, S.A., Khalilzadeh, M.A., Naghibi-Sistani, M.B., Niazmand, V.: Higher order spectra analysis of EEG signals in emotional stress states. In: 2010 Proceedings of the 2nd International Conference on Information Technology and Computer Science, pp. 60–63. Kiev (2010b), 24–25 July 2010. doi: 10.1109/ITCS.2010.21

  62. Frantzidis, C.A., Bratsas, C., Papadelis, C.L., Konstantinidis, E., Pappas, C., Bamidis, P.D.: Toward emotion aware computing an integrated approach using multichannel neurophysiological recordings and affective visual stimuli. IEEE Trans. Inf. Technol. Biomed. 14(3), 589–597 (2010)

    Article  Google Scholar 

  63. Chanel, G., Kierkels, J.J.M., Soleymani, M., Pun, T.: Short-term emotion assessment in a recall paradigm. Int. J. Hum Comput Stud. 67(8), 607–627 (2009)

    Article  Google Scholar 

  64. Murugappan, M., Nagarajan, R., Yaacob, S.: Combining spatial filtering and wavelet transform for classifying human emotions using EEG signals. J. Med. Biol. Eng. 31(1), 45–51 (2010)

    Article  Google Scholar 

  65. Lin, Y.P., Wang, C.H., Jung, T.P., Wu, T.L., Jeng, S.K., Duann, J.R., Chen, J.H.: EEG-based emotion recognition in music listening. IEEE Trans. Biomed. Eng. 57(7), 1798–1806 (2010)

    Article  Google Scholar 

  66. Lin, Y.P., Wang, C.H., Wu, T.L., Jeng, S.K., Chen, J.H.: Multilayer perceptron for EEG signal classification during listening to emotional music. In: IEEE Region 10 Conference on TENCON 2007, pp. 1–3. Taipei, 30 Oct.-2 Nov. 2007. doi: 10.1109/TENCON.2007.4428831

  67. Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from EEG using higher order crossings. IEEE Trans. Inf Technol. Biomed. 14(2), 186–197 (2010)

    Article  Google Scholar 

  68. Wang, X.W., Nie, D., Lu, B.L.: EEG-based emotion recognition using frequency domain features and support vector machines. In: Neural Information Processing of Lecture Notes in Computer Science, vol. 7062, pp. 734–743. China, 13–17 Nov. 2011

    Google Scholar 

  69. Hadjidimitriou, S.K., Hadjileontiadis, L.J.: Toward an EEG-based recognition of music liking using time-frequency analysis. IEEE Trans. Biomed. Eng. 59(12), 3498–3510 (2012)

    Article  Google Scholar 

  70. Ball G., Breese J.: Modeling the emotional state of computer users. In: Workshop on Attitude, Personality and Emotions in User-Adapted Interaction, Banff, Canada (1999)

    Google Scholar 

  71. Hudlicka, E.: Increasing SIA architecture realism by modeling and adapting to affect and personality. In: Socially Intelligent Agents Multiagent Systems, Artificial Societies, and Simulated Organizations, vol 3, pp. 53–60 (2002). doi: 10.1007/0-306-47373-96

  72. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: a clarification. Ann. Math. Artif. Intell. 32(1–4), 35–66 (2001)

    Article  MathSciNet  Google Scholar 

  73. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Aroach to Learning and Machine Intelligence. Prentice Hall Inc, Saddle River (1997)

    Google Scholar 

  74. Zhang, Q., Lee, M.: Fuzzy-gist for emotion recognition in natural scene images. In: IEEE 8th International Conference on Development and Learning, pp. 1–7. Shanghai, 5–7 June 2009. doi: 10.1109/DEVLRN.2009.5175518

  75. Dubois, D., Prade, H.: An introduction to fuzzy systems. Clin. Chim. Acta 270(1), 3–29 (1998)

    Article  Google Scholar 

  76. Kuncheva, L.I., Steimann, F.: Fuzzy diagnosis. Artif. Intell. Med. 16, 121–128 (1999)

    Article  Google Scholar 

  77. Nauck, D., Kruse, R.: Obtaining interpretable fuzzy classification rules from medical data. Artif. Intell. Med. 16(2), 149–169 (1999)

    Article  MathSciNet  Google Scholar 

  78. Jang, J.S.R.: Self-learning fuzzy controllers based on temporal backpropagation. IEEE Trans. Neural Networks 3(5), 714–723 (1992)

    Article  Google Scholar 

  79. Jang, J.S.R.: ANFIS adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  80. Belal, S.Y., Taktak, A.F.G., Nevill, A.J., Spencer, S.A., Roden, D., Bevan, S.: Automatic detection of distorted plethysmogram pulses in neonates and paediatric patients using an adaptive-network-based fuzzy inference system. Artif. Intell. Med. 24(2), 149–165 (2002)

    Article  Google Scholar 

  81. Usher, J., Campbell, D., Vohra, J., Cameron, J.: A fuzzy logic-controlled classifier for use in implantable cardioverter defibrillators. Pacing Clin. Electrophysiol. 22(1), 183–186 (1999)

    Article  Google Scholar 

  82. Übeyli, E.D., Güler, I.: Automatic detection of erythemato-squamous diseases using adaptive neuro-fuzzy inference systems. Comput. Biol. Med. 35(5), 421–433 (2005)

    Article  Google Scholar 

  83. Übeyli, E.D., Güler, I.: Adaptive neuro-fuzzy inference systems for analysis of internal carotid arterial Doppler signals. Comput. Biol. Med. 35(8), 608–702 (2005)

    Google Scholar 

  84. Virant-Klun, I., Virant, J.: Fuzzy logic alternative for analysis in the biomedical sciences. Int. J. Comput. Biomed. Res. 32(4), 305–321 (1999)

    Article  Google Scholar 

  85. Cristianini N., Taylor J.S.: An introduction to support vector machines and other kernel-based learning methods. Cambridge UK Cambridge University Press, Cambridge (2000)

    Google Scholar 

  86. Yang, Y.H., Liu, C.C., Chen, H.H.: Music emotion classification: a fuzzy approach. In: Proceedings of ACM Multimedia, pp. 81–84. Santa Barbara, CA, 23–27 Oct. 2006. doi: 10.1145/1180639.1180665

  87. Srinivasa, K.G., Venugopal, K.R., Patnaik, L.M.: Feature extraction using fuzzy C-means clustering for data mining systems. Int. J. Comput. Sci. Netw. Secur. 6(3A), 230–236 (2006)

    Google Scholar 

  88. Murugappan, M., Rizon, M., Nagarajan, R., Yaacob, S., Zunaidi, I., Hazry, D.: EEG feature extraction for classifying emotions using FCM and FKM. Int. J. Comput. Commun. 1(2), 21–25 (2007)

    Google Scholar 

  89. Murugappan, M., Rizon, M., Nagarajan, R., Yaacob, S., Zunaidi, I., Hazry, D.: Lifting scheme for human emotion recognition using EEG. In: International Symposium on Information Technology, pp. 1–7. Kuala Lumpur, Malaysia, 26–28 Aug. 2008. doi: 10.1109/ITSIM.2008.4631646

  90. Berka, C., Levendowski, D.J., Cvetinovic, M.M., Petrovic, M.M., Davis, G., Lumicao, M.N., Zivkovic, V.T., Popovic, M.V., Olmstead, R.: Real-time analysis of EEG indexes of alertness, cognition, and memory acquired with a wireless EEG headset. Int. J. Hum. Comput. Interact. 17(2), 151–170 (2004)

    Article  Google Scholar 

  91. Besserve, M., Philippe, M., Florence, G., Laurent, F., Garnero, L., Martinerie, J.: Prediction of performance level during a cognitive task from ongoing EEG oscillatory activities. Clin. Neurophysiol. 119(4), 897–908 (2008)

    Article  Google Scholar 

  92. Freeman, F.G., Mikulka, P.J., Scerbo, M.W., Scott, L.: An evaluation of an adaptive automation system using a cognitive vigilance task. Biol. Psychol. 67(3), 283–297 (2004)

    Article  Google Scholar 

  93. Pope, A.T., Bogart, E.H., Bartolome, D.S.: Biocybernetic system evaluates indexes of operator engagement in automated task. Biol. Psychol. 40(1–2), 187–195 (1995)

    Article  Google Scholar 

  94. Wilson, G.F., Russell, C.A.: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks. Hum. Factors 45(4), 635–643 (2003)

    Article  Google Scholar 

  95. Davidson, R.J., Jackson, D.C., Kalin, N.H.: Emotion plasticity context and regulation perspectives from affective neuroscience. Psychol. Bull. 126(6), 890–909 (2000)

    Article  Google Scholar 

  96. Niedermeyer, E., Silva, F.L.: Electroencephalography basic principles clinical applications and related fields. Baltimore MD Williams and Wilkins, New York (1993)

    Google Scholar 

  97. Ekman P.: Basic emotions. In: Dalgleish, T., Power, M. (eds.) Handbook of Cognition and Emotion Sussex. UK John Wiley & Sons Ltd, New York (1999)

    Google Scholar 

  98. Lang, P.J.: The emotion probe studies of motivation and attention. Am. Psychol. 50(5), 372–385 (1995)

    Article  Google Scholar 

  99. Kim, J., Andre, E.: Emotion recognition based on physiological changes in music listening. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2067–2083 (2008)

    Article  Google Scholar 

  100. Koelstra, S., Muhl, C., Soleymani, M., Lee, J.S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I.: DEAP: a database for emotion analysis using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)

    Article  Google Scholar 

  101. Murugappan, M., Juhari, M.R.B.M., Nagarajan, R., Yaacob, S.: An investigation on visual and audiovisual stimulus based emotion recognition using EEG. Int. J. Med. Eng. Inform. 1(3), 342–356 (2009)

    Article  Google Scholar 

  102. Cowie R., Douglas-Cowie E., Savvidou S., McMahon E., Sawey M., Schroder M.: ‘Feeltrace’ an instrument for recording perceived emotion in real time. In: Proceedings of ISCA Workshop Speech and Emotion, pp. 19–24. Newcastle, UK (2000)

    Google Scholar 

  103. Strela, V., Heller, P.N., Strang, G., Topiwala, P., Heil, C.: The application of multiwavelet filter banks to image processing. IEEE Trans. Image Process. 8(4), 548–563 (1999)

    Article  Google Scholar 

  104. Cotronei, M., Lazzaro, D., Montefusco, L.B., Puccio, L.: Image compression through embedded multiwavelet transform coding. IEEE Trans. Image Process. 9(2), 184–189 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  105. Cotronei, M., Montefusco, L.B., Puccio, L.: Multiwavelet analysis and signal processing. IEEE Trans. Circ. Syst. II 45(8), 970–987 (1998)

    Article  MATH  Google Scholar 

  106. Hsung, T.S., Lun, D.P.K., Ho, K.C.: Optimizing the multiwavelet shrinkage denoising. IEEE Trans. Signal Process. 53(1), 240–251 (2005)

    Article  MathSciNet  Google Scholar 

  107. Khouzani, K.J., Zadeh, H.S.: Multiwavelet grading of pathological images of prostate. IEEE Trans. Biomed. Eng. 50(6), 697–704 (2003)

    Article  Google Scholar 

  108. Wang, J.W.: Multiwavelet packet transforms with application to texture segmentation. Electron. Lett. 38, 1021–1023 (2002)

    Article  Google Scholar 

  109. Jahankhani, P., Kodogiannis, V., Revett, K.: EEG signal classification using wavelet feature extraction and neural networks. In: IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing, pp. 52–57. Sofia, 3–6 Oct. 2006. doi: 10.1109/JVA.2006.17

  110. Kalayci, T., Ozdamar, O.: Wavelet preprocessing for automated neural network detection of EEG spikes. IEEE Eng. Med. Biol. Mag. 14(2), 160–166 (1995)

    Article  Google Scholar 

  111. Guo, L., Rivero, D., Pazos, A.: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J. Neurosci. Methods 193(1), 156–163 (2010)

    Article  Google Scholar 

  112. Plonka, G., Strela, V.: From wavelets to multiwavelet. In: Dahlen, M., Lyche, T., Scchumaker, LL. (eds.) Mathematical Methods for Curves and Surfaces II. Vanderbilt University Press, Nashville, pp. 375–399 (1998)

    Google Scholar 

  113. Geronimo, J.S., Hardin, D.P., Massopust, P.R.: Fractal functions and wavelet expansions based on several scaling functions. J. Approximation Theor. 78(3), 373–401 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  114. Qumar, J., Pachori, R.B.: A novel technique for merging of multisensor and defocussed images using multiwavelets. In: IEEE Region 10 (TENCON 2005), pp. 1733–1738. Melbourne, 21–24 Nov. 2005. doi: 10.1109/TENCON.2005.300836

  115. Xiaodong, W., Yanyang, Z., Zhengjia, H.: Multiwavelet denoising with improved neighboring coefficients for application on rolling bearing fault diagnosis. Mech. Syst. Signal Process. 25(1), 285–304 (2011)

    Article  Google Scholar 

  116. Shaw, R.: Strange attractors chaotic behavior and information flow. Naturforsch 36A, 80–112 (1981)

    Google Scholar 

  117. Grassberger, P., Procaccia, I.: Estimation of the kolmogorov entropy from a chaotic signal. Phys. Rev. A 28(4), 2591–2593 (1983)

    Article  Google Scholar 

  118. Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57(3), 617–656 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  119. Takens, F.: Invariants related to dimension and entropy. In: Proceedings of 13th Coloquio Brasileiro de Matematica, Rio de Janeiro, Brazil (1983)

    Google Scholar 

  120. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. 88(6), 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  121. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039–H2049 (2000)

    Google Scholar 

  122. Chen X., Solomon I.C., Chon K.H.: Comparison of the use of approximate entropy and sample entropy applications to neural respiratory signal. In: Proceedings of the IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 4212–4215. Shanghai China (2005), 17–18 Jan. 2006. doi: 10.1109/IEMBS.2005.1615393

  123. Song, Y., Lio, P.: A new approach for epileptic seizure detection sample entropy based extraction and extreme learning machine. J. Biomed. Sci. Eng. 3(6), 556–567 (2010)

    Article  Google Scholar 

  124. Jones, D., Parks, T.W.: A high resolution data-adaptive time-frequency representation. IEEE Trans. Acoust. Speech Sign. Process. 38(12), 2127–2135 (1990)

    Article  Google Scholar 

  125. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  126. Renyi, A.: On measures of entropy and information. Proc. Fourth Berkeley Symp. Math. Stat. Probab. 1, 547–561 (1961)

    MathSciNet  Google Scholar 

  127. Sengur, A.: Multiclass least-squares support vector machines for analog modulation classification. Expert Syst. Appl. 36(3), 6681–6685 (2009)

    Article  Google Scholar 

  128. Bajaj, V., Pachori, R.B.: Automatic classification of sleep stages based on the time-frequency image of EEG signals. Comput. Methods Programs Biomed. 112(3), 320–328 (2013)

    Article  Google Scholar 

  129. Bajaj, V., Pachori, R.B.: Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf Technol. Biomed. 16(6), 1135–1142 (2012)

    Article  Google Scholar 

  130. Bajaj V., Pachori R.B.: EEG signal classification using empirical mode decomposition and support vector machine. In: International Conference on Soft Computing for Problem Solving, AISC 131, pp. 623–635. Roorkee, India, (2012b), 20–22 December 2011. doi: 10.1007/978-81-322-0491-6-57

  131. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  132. Vapnik, V.: The nature of statistical learning theory. Springer, New York (1995)

    Google Scholar 

  133. Suykens, J.A.K., Vandewalle, J.: Multiclass least squares support vector machines. In: International Joint Conference on Neural Networks, pp. 900–903. Washington, DC, Jul 1999. doi: 10.1109/IJCNN.1999.831072

  134. Xing, Y., Wu, X., Xu, Z.: Multiclass least square wavelet support vector machines. In: IEEE International Conference on Networking Sensing and Control, pp. 498–502. Sanya, 6–8 April 2008. doi: 10.1109/ICNSC.2008.4525268

  135. Zavar, M., Rahati, S., Akbarzabeh, M.R., Ghasemifard, H.: Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection. Expert Syst. Appl. 38(9), 10751–10758 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support obtained from the Department of Science and Technology (DST) India, Fast track project titled “Analysis and Classification of EEG Signals based on Nonlinear and Non-stationary Signal Models”, project number SR/FTP/ETA-90/2010 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Bajaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bajaj, V., Pachori, R.B. (2015). Detection of Human Emotions Using Features Based on the Multiwavelet Transform of EEG Signals. In: Hassanien, A., Azar, A. (eds) Brain-Computer Interfaces. Intelligent Systems Reference Library, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-10978-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10978-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10977-0

  • Online ISBN: 978-3-319-10978-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics