Skip to main content

Translational Algorithms: The Heart of a Brain Computer Interface

  • Chapter
  • First Online:

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 74))

Abstract

Brain computer Interface (BCI) development encapsulates three basic processes: data acquisition, data processing, and device control. Since the start of the millennium the BCI development cycle has undergone a metamorphosis. This is mainly due to the increased popularity of BCI applications in both commercial and research circles. One of the focuses of BCI research is to bridge the gap between laboratory research and commercial applications using this technology. A vast variety of new approaches are being employed for BCI development ranging from novel paradigms, such as simultaneous acquisitions, through to asynchronous BCI control. The strategic usage of computational techniques, comprising the heart of the BCI system, underwrites this vast range of approaches. This chapter discusses these computational strategies and translational techniques including dimensionality reduction, feature extraction, feature selection, and classification techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ang, K.K., Guan, C., Chua, K.S.G., et al.: Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback. In: Conference of the IEEE Engineering in Medicine and Biology Society (2010)

    Google Scholar 

  2. Azar, A., Balas, V., Olariu, T.: Classification of EEG-based brain-computer interfaces. In: Iantovics, B., Kountchev, R. (eds.) Advanced Intelligent Computational Technologies and Decision Support Systems SE—9, Studies in Computational Intelligence, pp. 97–106. Springer, New York (2014)

    Google Scholar 

  3. Billinger, M., Daly, I., Kaiser, V., et al.: Is it significant? Guidelines for reporting BCI performance. In: Toward Practical BCIs: Bridging the Gap from Research to Real-World Applications (2012)

    Google Scholar 

  4. Birbaumer, N.: The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome. Rehabilitation 11(2), 120–123 (2003)

    Google Scholar 

  5. Birbaumer, N.: Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology 43(6), 517–532 (2006)

    Article  Google Scholar 

  6. Chen, X., Bin, G., Daly, I., et al.: Event-related desynchronization (ERD) in the alpha band during a hand mental rotation task. Neurosci. Lett. 541, 238–242 (2013)

    Google Scholar 

  7. De Clercq, W., Vergult, A., Vanrumste, B., et al.: Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. IEEE Trans. Bio-med. Eng. 53(12 Pt 1), 2583–2587 (2006)

    Article  Google Scholar 

  8. Coyle, S.M., Ward, T.E., Markham, C.M.: Brain-computer interface using a simplified functional near-infrared spectroscopy system. J. Neural. Eng. 4, 219–226 (2007). doi: 10.1088/1741-2560/4/3/007

  9. Daly, I., Billinger, M., Laparra-Hernández, J., et al.: On the control of brain-computer interfaces by users with cerebral palsy. Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. 124(9), 1787–1797 (2013)

    Article  Google Scholar 

  10. Daly, I., Nasuto, S.J., Warwick, K.: Single tap identification for fast BCI control. Cogn. Neurodyn. 5(1), 21–30 (2011)

    Article  Google Scholar 

  11. Daly, I., Nasuto, S.J., Warwick, K.: Brain computer interface control via functional connectivity dynamics. Pattern Recogn. 45(6), 2123–2136 (2012)

    Article  Google Scholar 

  12. Daly, I., Nicolaou, N., Nasuto, S.J., et al.: Automated artifact removal from the electroencephalogram: a comparative study. Clin. EEG Neurosci. 44(4), 291–306 (2013)

    Article  Google Scholar 

  13. Donchin, E., Heffley, E., Hillyard, S.A., et al.: Cognition and event-related potentials II. The orienting reflex and P300. Ann. NY Acad. Sci. 425(1 Brain and Inf), 39–57 (1984)

    Google Scholar 

  14. Ebersole, J.S., Pedley, T.A.: Current practice of clinical electroencephalography, 3rd edn. Eur. J. Neurol. 10(5), 604–605 (2003)

    Article  Google Scholar 

  15. Farwell, La, Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)

    Article  Google Scholar 

  16. Fazli, S., Mehnert, J., Steinbrink, J., et al.: Enhanced performance by a hybrid NIRS-EEG brain computer interface. NeuroImage 59(1), 519–529 (2012)

    Article  Google Scholar 

  17. Friedrich, E.V.C., Scherer, R., Neuper, C.: The effect of distinct mental strategies on classification performance for brain-computer interfaces. Int. J. Psychophysiol. 84, 86–94 (2012)

    Article  Google Scholar 

  18. Gan, G.: Data Clustering: Theory, Algorithms and Applications. SIAM, Philadelphia (2007)

    Google Scholar 

  19. Gibson, A., Dehghani, H.: Diffuse optical imaging. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 367(1900), 3055–3072 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)

    Article  Google Scholar 

  21. Graimann, B., Huggins, J., Levine, S., et al.: Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data. Clin. Neurophysiol. 113(1), 43–47 (2002)

    Article  Google Scholar 

  22. Guger, C., Harkam, W., Hertnaes, C., et al.: Prosthetic control by an EEG-based brain-computer interface (BCI). In: Proceedings of the AAATE Conference (1999)

    Google Scholar 

  23. Guyon, I.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3(7–8), 1157–1182 (2003)

    MATH  Google Scholar 

  24. Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis (1999)

    Google Scholar 

  25. Handy, T.C.: Event-related Potentials: A Methods Handbook. MIT Press, Cambridge (2005)

    Google Scholar 

  26. Hill, N.J., Lal, T.N., Schröder, M., et al.: Classifying EEG and ECoG signals without subject training for fast BCI implementation: comparison of nonparalyzed and completely paralyzed subjects. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 183–186 (2006)

    Article  Google Scholar 

  27. Huggins, J.E., Guger, C., Allison, B., et al.: Workshops of the fifth international brain-computer interface meeting: defining the future. Brain-Comput. Interfaces 1(1), 27–49 (2014)

    Article  Google Scholar 

  28. Hwang, H.-J., Kim, S., Choi, S., et al.: EEG-based brain-computer interfaces (BCIs): a thorough literature survey. Int. J. Human-Comput. Int. 29(12), 130429122442009 (2013)

    Google Scholar 

  29. Izzetoglu, M., Izzetoglu, K., Bunce, S., et al.: Functional near-infrared neuroimaging. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 13(2), 153–159 (2005)

    Article  Google Scholar 

  30. Jin, J., Sellers, E.W., Zhang, Y., et al.: Whether generic model works for rapid ERP-based BCI calibration. J. Neurosci. Methods 212(1), 94–99 (2013)

    Article  Google Scholar 

  31. Kennedy, P., Andreasen, D., Ehirim, P., et al.: Using human extra-cortical local field potentials to control a switch. J. Neural Eng. 1(2), 72–77 (2004)

    Article  Google Scholar 

  32. Kohavi, R.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)

    Article  MATH  Google Scholar 

  33. Koles, Z.J., Lazar, M.S., Zhou, S.Z.: Spatial patterns underlying population differences in the background EEG. Brain Topogr. 2(4), 275–284 (1990)

    Article  Google Scholar 

  34. Kottaimalai, R., Rajasekaran, M.P., Selvam, V., et al.: EEG signal classification using principal component analysis with neural network in brain computer interface applications. In: 2013 IEEE International Conference on Emerging Trends in Computing, Communication and Nanotechnology (ICECCN), pp. 227–231 (2013)

    Google Scholar 

  35. Krusienski, D.J., Sellers, E.W., McFarland, D.J., et al.: Toward enhanced P300 speller performance. J. Neurosci. Methods 167(1), 15–21 (2008)

    Article  Google Scholar 

  36. Lal, T.N., Schr, M., Hill, N.J., et al.: A brain computer interface with online feedback based on magnetoencephalography. In: Proceedings of 22nd International Conference on Machine Learning (2005)

    Google Scholar 

  37. Leeb, R., Friedman, D., Müller-Putz, G.R., et al.: Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. Comput. Intell. Neurosci. 79642 (2007)

    Google Scholar 

  38. Lotte, F., Congedo, M., Lécuyer, A., et al.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural. Eng. 4, R1–R13 (2007). doi: 10.1088/1741-2560/4/2/R01

  39. Luck, S.J.: Ten simple rules for designing ERP experiments. In: Handy, T.C. (ed.) Event-Related Potentials—A Methods Handbook, pp. 17–32. MIT Press, Cambridge (2005)

    Google Scholar 

  40. Mappus IV, R.L., Venkatesh, G.R., Shastry, C., et al.: An fNIR based BMI for letter construction using continuous control. CHI ’09 Extended Abstracts on Human Factors in Computing Systems. ACM, New York, pp. 3571–3576 (2009)

    Google Scholar 

  41. Mason, S.G., Birch, G.E.: A general framework for brain-computer interface design. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 11(1), 70–85 (2003)

    Article  Google Scholar 

  42. Mellinger, J., Schalk, G., Braun, C., et al.: An MEG-based brain-computer interface (BCI). NeuroImage 36(3), 581–593 (2007)

    Article  Google Scholar 

  43. Menon, V., Freeman, W.J., Cutillo, B.A., et al.: Spatio-temporal correlations in human gamma band electrocorticograms. Electroencephalogr. Clin. Neurophysiol. 98(2), 89–102 (1996)

    Article  Google Scholar 

  44. Miranda, E.R., Magee, W.L., Wilson, J.J., et al.: Brain-computer music interfacing (BCMI): from basic research to the real world of special needs. Music Med. 3(3), 134–140 (2011)

    Article  Google Scholar 

  45. Müller-Putz, G.R., Scherer, R., Brauneis, C., et al.: Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J. Neural Eng. 2(4), 123–130 (2005)

    Article  Google Scholar 

  46. Naito, M., Michioka, Y., Ozawa, K., et al.: A Communication Means for Totally Locked-in ALS Patients Based on Changes in Cerebral Blood Volume Measured with Near-Infrared Light. IEICE Trans Inf Syst. E90-D:1028–1037 (2007)

    Google Scholar 

  47. Nam, C.S., Li, Y., Johnson, S.: Evaluation of P300-based brain-computer interface in real-world contexts. Int. J. Human-Comput. Interact. 26(6), 621–637 (2010)

    Article  Google Scholar 

  48. Neuper, C., Scherer, R., Reiner, M., et al.: Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res. Cogn. Brain Res. 25(3), 668–677 (2005)

    Article  Google Scholar 

  49. Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors (Basel) 12, 1211–79 (2012). doi: 10.3390/s12020121

  50. Niedermeyer, E., Da Silva, F.H.L.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  51. Nijholt, A., Desney, T.: BCI for Games: a State of the Art Survey. Lecture Notes in Computer Science. Springer, Berlin (2009)

    Google Scholar 

  52. O’Brien, J.H.: P300 wave elicited by a stimulus-change paradigm in acutely prepared rats. Physiol. Behav. 28(4), 711–713 (1982)

    Article  Google Scholar 

  53. Perelmouter, J., Birbaumer, N.: A binary spelling interface with random errors. IEEE Trans. Rehabil. Eng. 8(2), 227–232 (2000)

    Article  Google Scholar 

  54. Perez, J.L.M., Cruz, A.B.: Linear discriminant analysis on brain computer interface. In: 2007 IEEE International Symposium on Intelligent Signal Processing, pp. 1–6 (2007)

    Google Scholar 

  55. Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)

    Article  Google Scholar 

  56. Pfurtscheller, G., Müller-Putz, G.R., Schlögl, A., et al.: 15 years of BCI research at Graz University of Technology: current projects. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 205–210 (2006)

    Article  Google Scholar 

  57. Pfurtscheller, G., Allison, B.Z., Brunner, C., et al.: The hybrid BCI. Front. Neuroprosthetics 4(30) (2010)

    Google Scholar 

  58. Power, S.D., Falk, T.H., Chau. T.: Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy. J. Neural. Eng. 7, 26002 (2010). doi: 10.1088/1741-2560/7/2/026002

  59. Pregenzer, M., Pfurtscheller, G.: Frequency component selection for an EEG-based brain to computer interface. IEEE Trans. Rehabil. Eng. 7(4), 413–419 (1999)

    Article  Google Scholar 

  60. Schalk, G., Leuthardt, E.C.: Brain-computer interfaces using electrocorticographic signals. IEEE Rev. Biomed. Eng. 4, 140–154 (2011)

    Article  Google Scholar 

  61. Schalk, G., McFarland, D.J., Hinterberger, T., et al.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Bio-med. Eng. 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  62. Scherer, R., Graimann, B., Huggins, J.E., et al.: Frequency component selection for an ECoG-based brain-computer interface. Biomed. Tech. Biomed. Eng. 48(1–2), 31–36 (2003)

    Article  Google Scholar 

  63. Schlogl, A., Kronegg, J., Huggins, J.E., et al.: Evaluation Criteria in BCI Research. MIT Press, Cambridge (2007)

    Google Scholar 

  64. Schomer, L., Lopes de Silva, F., (eds.): Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 6th edn. Lippincott Williams & Wilkins, Philadelphia (2011)

    Google Scholar 

  65. Sellers, E.W., Donchin, E.: A P300-based brain-computer interface: initial tests by ALS patients. Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. 117(3), 538–548 (2006)

    Article  Google Scholar 

  66. Silvoni, S., Ramos-Murguialday, A., Cavinato, M., et al.: Brain-computer interface in stroke: a review of progress. Clin. EEG Neurosci. 42(4), 245–252 (2011)

    Article  Google Scholar 

  67. Singh, H., Qin, X., Hines, E., et al.: Classification and feature extraction strategies for multi channel multi trial BCI data. Int. J. Bioelectromagn. 9(4), 233–236 (2007)

    Google Scholar 

  68. Singh, H.: Development of EEG Based BCI Approaches for Detection of Awareness in Human Disorders of Consciousness (2009)

    Google Scholar 

  69. Singh, H., Yang, J., Singh, S., et al.: Channel selection for multi channel multi trial invasive BCI data. In: Shama, K., Nayak, K.P., Bhat, S. (eds.) Electronic Design and Signal Processing, pp. 92–96 (2012)

    Google Scholar 

  70. Sitaram, R., Caria, A., Birbaumer, N.: Hemodynamic brain-computer interfaces for communication and rehabilitation. Neural. Netw. 22, 1320–1328 (2009). doi: 10.1016/j.neunet.2009.05.009

  71. Sitaram, R., Caria, A., Veit, R., et al.: FMRI brain-computer interface: a tool for neuroscientific research and treatment. Comput. Intell. Neurosci. 25487 (2007)

    Google Scholar 

  72. Smith, L.I.: A Tutorial on Principal Components Analysis. Cornell University, USA (2002)

    Google Scholar 

  73. Sorger, B., Reithler, J., Dahmen, B., Goebel, R.: A real-time fMRI-based spelling device immediately enabling robust motor-independent communication. Curr. Biol. 22, 1333–1338 (2012). doi: 10.1016/j.cub.2012.05.022

  74. Tangermann, M.W.: Feature selection for brain-computer interfaces. Naturwissenschaften (2007)

    Google Scholar 

  75. Teixeira, A.R., Tome, A.M., Lang, E.W., et al.: On the use of clustering and local singular spectrum analysis to remove ocular artifacts from electroencephalograms. In: Proceedings of International Joint Conference on Neural Networks, pp. 2514–2519 (2005)

    Google Scholar 

  76. Tudor, M., Tudor, L., Tudor, K.I.: [Hans Berger (1873–1941)—the history of electroencephalography]. Acta Med. Croat.: Cas. Hravatske Akademije Medicinskih Znanosti 59(4), 307–313 (2005)

    Google Scholar 

  77. Vaughan, T.M., Heetderks, W.J., Trejo, L.J., et al.: Brain-computer interface technology: a review of the Second International Meeting. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 11(2), 94–109 (2003)

    Article  Google Scholar 

  78. Vaughan, T.M., Wolpaw, J.R.: The third international meeting on brain-computer interface technology: making a difference. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 14(2), 126–127 (2006)

    Article  Google Scholar 

  79. Vaughan, T.M., Wolpaw, J.R.: Special issue containing contributions from the fourth international brain-computer interface meeting. J. Neural Eng. 8(2), 020201 (2011)

    Article  Google Scholar 

  80. Wolf, M., Ferrari, M., Quaresima, V.: Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J. Biomed. Opt. 12(6), 062104 (2007)

    Article  Google Scholar 

  81. Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., et al.: Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 8(2), 164–173 (2000)

    Article  Google Scholar 

  82. Wolpaw, J.R., McFarland, D.J., Vaughan, T.M., et al.: The Wadsworth Center brain-computer interface (BCI) research and development program. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 11(2), 204–207 (2003)

    Article  Google Scholar 

  83. Xu, P., Yang, P., Lei, X., et al.: An enhanced probabilistic LDA for multi-class brain computer interface. PLoS ONE 6(1), e14634 (2011)

    Article  Google Scholar 

  84. Yang, J., Singh, H., Hines, E.L., et al.: Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. Artif. Intell. Med. 55(2), 117–126 (2012)

    Article  Google Scholar 

  85. Yorn-Tov, E., Inbar, G.F.: Selection of relevant features for classification of movements from single movement-related potentials using a genetic algorithm. In: 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1364–1366 (2001)

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mathew Dyson, Ph.D. student, Computer Science Department, University of Essex for his support in recording the dataset used in the case study described in this work. The authors are thankful to the BCI research community for their support and guidance through their publications and resources on the web.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsimrat Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, H., Daly, I. (2015). Translational Algorithms: The Heart of a Brain Computer Interface. In: Hassanien, A., Azar, A. (eds) Brain-Computer Interfaces. Intelligent Systems Reference Library, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-10978-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10978-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10977-0

  • Online ISBN: 978-3-319-10978-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics