Skip to main content

Technological Innovation and Anthropogenic Material Flows

  • Chapter
  • First Online:

Part of the book series: Natural Resource Management and Policy ((NRMP,volume 46))

Abstract

Throughout its history, humankind has made use of the earth’s natural resources. Humans have done this not only in the very basic sense as food for mere survival, but as a means of handicraft, industry, and cultural techniques that have shaped human society. The exploitation and use of resources depend on the available technology and on society’s stage of development. Technological progress and societal progress have always been closely interconnected, one enabling the other. Today the standard of living and social welfare in the most developed countries have reached a level that is unique in history although large parts of the world’s population still do not participate in the abundance of goods and of welfare.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angerer G (2010) Zukunftstechnologien und Weltwirtschaft treiben die Märkte für Hightech-Metalle. Emerging Technologies and World’s Economy Stimulate the Markets for High-tech Metals. In: Chemie Ingenieur Technik, Vol. 82, edition 11, pp 1955–1960

    Google Scholar 

  • Ashford NA (2001) Innovation—the pathway to threefold sustainability. In: The Steilmann Report: The Wealth of People: An Intelligent Economy for the 21st Century. Lehner/Franz/Charles/Anthony/Bieri/Stephan/Paleocrassas/Yannis (eds.) Brainduct ® – digital edition, 2001, pp 233–274

    Google Scholar 

  • Averill WA, Olson DL (1978) A review of extractive processes for lithium from ores and Brines. In: Penner SS (ed.) Lithium: needs and resources. Oxford, pp 305–313

    Google Scholar 

  • Baccini P, Bader HP (1996) Regionaler Stoffhaushalt. Bewertung und Steuerung. Heidelberg, Erfassung

    Google Scholar 

  • Baccini P, Brunner PH (1991) Metabolism of the anthroposphere. Berlin

    Google Scholar 

  • Bardi U (2009) Peak oil: The four stages of a new idea. WESC 2006, 6th World Energy System Conference; Advances in Energy Studies, 5th workshop on Advances, Innovation and Visions in Energy and Energy-related Environmental and Socio-Economic Issues. Energy 34(3); pp 323–326

    Google Scholar 

  • Bauer C, Poganietz W-R (2007) Prospektive Lebenszyklusanalyse oder die Zukunft in der Ökobilanz. Technikfolgenabschätzung—Theorie und Praxis 16(3):17–23, Available at http://www.itas.fzk.de/tatup/073/bapo07a.pdf

    Google Scholar 

  • Berendt S, Kahlenborn W, Feil M, Dereje C, Bleischwitz R, Delzeit R (2007) Rare metals: measures and concepts for the solution of the problem of conflict-aggravating raw material extraction—the example of coltan. Available at http://www.umweltbundesamt.de/ressourcen-e/metalle.htm (Accessed 10 November 2007)

  • Brunner PH, Rechberger H (2004) Practical handbook of material flow analysis. Lewis, Boca Raton

    Google Scholar 

  • Dechezleprêtre A, Glachant M, Hascic I, Johnstone N, Ménière Y (2008) Invention and transfer of climate change mitigation technologies on a global scale: a study drawing on patent data final report December 2008, Available at http://www.nccr-climate.unibe.ch/conferences/climate_policies/working_papers/Dechezlepretre.pdf (Accessed 6 June 2011)

  • Dewulf J, van der Vorst G, Denturck K et al (2010) Recycling rechargeable lithium ion batteries. Critical analysis of natural resource savings. Resour Conserv Recycl 54:229–234

    Article  Google Scholar 

  • Dorr AP, Paty AH (2002) Minerals: foundations of society, 3rd edn. American Geological Institute, Alexandria

    Google Scholar 

  • Ebensperger A et al (2005) The lithium industry: its recent evolution and future prospects. Resour Pol 30:218–231

    Article  Google Scholar 

  • Emke C (2010) Der Schatz im Salzsee. Available at http://www.zeit.de/2010/21/DOS-Lithium?page=3 (Accessed 14 July 2011)

  • Euractiv (2011) Lisbon agenda. Available at http://www.euractiv.com/en/future-eu/lisbon-agenda/article-117510 (Accessed 14 June 2011)

  • EUROSTAT (2001) Economy-wide material flow accounts and derived indicators, A methodological guide. European Communities, Luxembourg

    Google Scholar 

  • Feifel S, Faul A, Schebek L (2011) Vergleichende ökologische Analyse leichter Holzwerkstoffplatten mit unterschiedlichem Aufbau. holztechnologie 52(3):22–27

    Google Scholar 

  • Frischknecht R, Jungbluth N (ed.) (2007) Overview and methodology. Final report ecoinvent v2.0 No. 1, Dübendorf

    Google Scholar 

  • Frondel M, Grösche P, Huchtemann D, Oberheitmann A, Peters J, Vance C, Angerer G, Sartorius C, Buchholz P, Röhling S, Wagner M (2007) Trends der Angebots- und Nachfragesituation bei mineralischen Rohstoffen. Essen/Karlsruhe/Hannover

    Google Scholar 

  • Garcia R, Calantone R (2002) A critical look at technological innovation typology and innovativeness terminology: a literature review. J Prod Innovation Manage 19(2):110–132

    Article  Google Scholar 

  • Garret D (2004) Handbook of lithium and natural calcium chloride: their deposits, processing, uses and properties. In: Garrett DE (ed) Handbook of lithium and natural calcium chloride: their deposits, processing, uses and properties. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Goedkoop M, Spriensma R (2001) The Eco-indicator 99—a damage oriented method for life cycle impact assessment, 3rd edn, Methodology Report. Pre Consultants, Ammersfoort

    Google Scholar 

  • Grübler A (2000) Rohstoffe und Gesellschaft. BHM Berg- und Hüttenmännische Monatshefte 145(10):386–394

    Google Scholar 

  • Harper EM, Jonson J, Graedel TE (2006) Environ Eng Sci 23(3):493–506. doi:10.1089/ees.2006.23.493

    Article  Google Scholar 

  • Hischier R, Weidema B (ed.) (2009) Implementation of life cycle impact assessment methods. Final report ecoinvent v2.1 No. 3, St. Gallen, CH: Swiss Centre for Life Cycle Inventories

    Google Scholar 

  • ISO - International Organization for Standardization (2006a) Environmental management—life cycle assessment—Principles and framework, Geneva, Available at http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=37456

  • ISO - International Organization for Standardization (2006b) Environmental management—Life cycle assessment—Requirements and guidelines, Geneva, Available at http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38498

  • IPPC (2007) Climate change 2007—synthesis report. IPCC, Geneva

    Google Scholar 

  • Jolliet O et al (2003) Impact 2002+: a new life cycle impact assessment methodology. Int J LCA 8(6):324–330

    Article  Google Scholar 

  • Kinsbursky D (2008) EOL battery recycling: staying environmentally friendly cradle to grave. Plug-In 2008 Conference & Exposition 22–24 July 2008. San Jose

    Google Scholar 

  • Krausmann F, Gingrich S, Eisenmenger N, Erb K-H, Haberl H, Fischer-Kowalski M (2009) Growth in global materials use, GDP and population during the 20th century. Ecol Econ 68:2696–2705

    Article  Google Scholar 

  • Kunasz I (2006) Lithium resources. In: Kogel JE (ed.): Industrial minerals & rocks: commodities, markets, and uses. Littleton, pp 599–613

    Google Scholar 

  • Meadows D et al. (1972) The limits to growth. A report for the club of Rome’s project on the predicament of mankind. New York

    Google Scholar 

  • Miller D (2008) Outlook for the lithium industry. Industrial Minerals, Toronto, 10/2008

    Google Scholar 

  • OECD (1993) Frascati manual, 5th edn, Annex 2, para. 29, p. 116

    Google Scholar 

  • Poppensieker J, Thömen H (2005) Wabenplatten für den Möbelbau. Bundesforschungsanstalt für Forst- und Holzwirtschaft: Arbeitsbericht Institut für Holzphysik und mechanische Technologie des Holzes No. 2005/02. Hamburg

    Google Scholar 

  • Roskill-Reports (Ed.) The economics of lithium, 10th Edn. London

    Google Scholar 

  • Schumpeter JA, Dockhorn K (1982) Business cycles: a theoretical, historical, and statistical analysis of the capitalist process. Original edition: New York 1939

    Google Scholar 

  • Seidel A, Kirk RE, Othmer DF (2005) [Li—Me]. In: Kirk-Othmer encyclopedia of chemical technology Vol 15, 5th Edn. Hoboken

    Google Scholar 

  • Tahil W (2007) The trouble with lithium. Implications of future PHEV production for lithium demand, Available at http://www.meridian-int-res.com/Projects/Lithium_Problem_2.pdf (Accessed 1 February 2010)

  • Tytgat J, Lopez I, van Damme G (2008) End of life management and recycling of rechargeable lithium ion, lithium-polymer and nickel metal hydride batteries. An industrial award-wining Comprehensive Solution, Available at http://www.batteryrecycling.umicore.com/ download/UmicoreBatteryRecycling2008.pdf (Accessed 20 July 2010)

  • UNEP (2007) Global environmental outlook GEO4. Valetta, Available at http://www.unep.org/geo/geo4.asp (Accessed 14 July 2011)

  • USGS (2008) Minerals yearbook: lithium. U.S. Department of the Interior, Geological Survey, Reston, VA, USA

    Google Scholar 

  • USGS (2009) Mineral commodity summaries 2009. United States Geological Survey, Reston

    Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW (1997) Human alteration of the global nitrogen cycle. Sources and consequences. Ecol Appl 7(3):737–750, Available at DOI: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2 and http://www.esajournals.org/doi/abs/10.1890/1051-0761%281997%29007%5B0737%3AHAOTGN%5D2.0.CO%3B2

    Google Scholar 

  • Weil M, Ziemann S, Schebek L (2009) How to assess the availability of resources for new technologies? Case study: lithium a strategic metal for emerging technologies. Revue de Métallurgie 12:554–558, Available at Doi: 10.1051/metal/2009088

    Article  Google Scholar 

  • Wellmer F, Becker-Platen JD (2002) Sustainable development and the exploitation of mineral and energy resources: a review. Int J Earth Sci 91(5):723–745

    Article  Google Scholar 

  • Xu J (2008) A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Source 177:512–527

    Article  Google Scholar 

  • Yaksic A (2010) Personal communication to S. Ziemmann

    Google Scholar 

  • Ziemann S, Weil M, Schebek L (2012a) Tracing the fate of lithium—the development of a material flow model. Resour Conserv Recycl 63:26–34

    Article  Google Scholar 

  • Ziemann S, Schebek L, Weil M (2012b) Dissipative application of lithium—lost for the future? Revue de Metallurgie 109:341–347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liselotte Schebek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schebek, L., Poganietz, WR., Feifel, S., Ziemann, S. (2015). Technological Innovation and Anthropogenic Material Flows. In: Hartard, S., Liebert, W. (eds) Competition and Conflicts on Resource Use. Natural Resource Management and Policy, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-10954-1_10

Download citation

Publish with us

Policies and ethics