The Integrated versus Standalone Operation Mode for Second and Subsequent Fragments Headers Compression Scheme in 6LoWPAN

  • S. A. B. Awwad
  • C. K. Ng
  • N. K. Noordin
  • B. M. Ali
  • F. Hashim
  • N. H. A. Ismail
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 11)


In 6LoWPAN, IPv6 is capable to provide identity and wireless embedded internet aims for efficiently providing IP global connectivity for wireless, small size, low power, low rate, limited memory and limited computation capabilities embedded smart objects. However, the relatively huge header size of upper layer protocols (e.g. TCP, UDP and IPv6) will deplete the frame payload to approximately 33 bytes. Some schemes had been designed to compress the headers to provide more space for the data payload. Recently, a standalone operation mode for Second and Subsequent Fragments Headers Compression (S&SFHC) scheme for header compression in 6LoWPAN has been proposed. This scheme exploits the correlation between the first and the subsequent fragments’ headers to avoid carrying the redundant headers of second and subsequent fragments. In this paper, an extended version of S&SFHC for 6LoWPAN is proposed. This new scheme is introduced by integrating S&SFHC with other existing scheme like LOWPAN_IPHC. When the proposed new scheme incorporates with another scheme, the existed scheme is used to compress the header for the first fragment only. The second and subsequent fragments will be compressed by using S&SFHC scheme. The integration between S&SFHC and LOWPAN_IPHC schemes can achieve up to 30% and 10% higher packet delivery ratio, 30% and 10% higher throughput, 18% and 6% lower average delay, 24% and 4% lower average energy consumption compared to LOWPAN_IPHC and S&SFHC standalone mode respectively when the packet size is 600 bytes.


6LoWPAN header compression IPv6 IEEE802.15.4 fragmentation and reassembly 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashton, K.: That “Internet of Things” Thing, in the real world things matter more than ideas. RFID J. (2009)Google Scholar
  2. 2.
    Mattern, F., Christian, F.: From the Internet of Computers to the Internet of Things. Inform. 33(2), 107–121 (2010)Google Scholar
  3. 3.
    Eddy, B.: A Service-Based Methodology for RFID-Smart Objects Interactions in Supply Chain. Int. J. Multimed. Ubiquitous Eng. 4 (2009)Google Scholar
  4. 4.
    Mcfarlane, D., Sarma, S., Lung, C.J., Wong, C.Y., Ashton, K.: The intelligent product in manufacturing control and management. In: 15th Trienn. World Congr. IFAC, Barcelona (2002)Google Scholar
  5. 5.
    Eddy, B.: Ambient Services Modeling Framework for Intelligent Products. In: Smart Object Syst. Work. on UbiComp 2005 (2005)Google Scholar
  6. 6.
    Goumopoulos, C., Kameas, A.: Smart Objects as Components of UbiComp Applications. Int. J. Multimed. Ubiquitous Eng. 4 (2009)Google Scholar
  7. 7.
    Raza, S., Trabalza, D., Voigt, T.: 6LoWPAN Compressed DTLS for CoAP. In: IEEE Int. Conf. Distrib. Comput. Sens. Syst. (DCOSS 2012), Hangzhou, China (2012)Google Scholar
  8. 8.
    Montenegro, G., Kushalnagar, N., Hui, J.: Transmission of IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944, IETF Netw. Work. Gr. 802.15.4 Networks (2007)Google Scholar
  9. 9.
    Hui, J., Culler, D.: Stateless IPv6 Header Compression for Globally Routable Packets in 6LoWPAN Sub-networks. 6LoWPAN WG Draft (2007)Google Scholar
  10. 10.
    Hui, J., Thubert, P.: Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks. RFC 6282, IETF (2011)Google Scholar
  11. 11.
    Raza, S., Duquennoy, S., Slander, G.: Compression of IPsec AH and ESP Headers for Constrained Environments. Internet-Draft (2013)Google Scholar
  12. 12.
    Ludovici, A., Calveras, A., Catalan, M., Gómez, C., Paradells, J.: Implementation and evaluation of the enhanced header compression (IPHC) for 6LoWPAN. In: Oliver, M., Sallent, S. (eds.) EUNICE 2009. LNCS, vol. 5733, pp. 168–177. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Awwad, S.A.B., Ng, C.K., Noordin, N.K., Ali, B.M., Hashim, F.: Second and Subsequent Fragments Headers Compression Scheme for IPv6 Header in 6LoWPAN Network. In: Seventh Int. Conf. Sens. Technol. (2013)Google Scholar
  14. 14.
    Jacobson, V.: Compressing TCP/IP Headers for Low-Speed Serial Links. RFC 1144 (1990)Google Scholar
  15. 15.
    Degermark, M., Nordgren, B., Pink, S.: Header Compression for IPv6. RFC 2507. Stand. Track (1999)Google Scholar
  16. 16.
    Casner, S., Jacobson, V.: Compressing IP/UDP/RTP Headers for Low-Speed Serial Links. RFC 2508, Stand. Track (1999)Google Scholar
  17. 17.
    Degermark, M., Engan, M., Nordgren, B., Pink, S.: Low-loss TCP/IP header compression for wireless networks. Wirel. Networks 3, 375–387 (1997)CrossRefGoogle Scholar
  18. 18.
    Giovanardi, G., Mazzini, M.R., Zorzi, M.: Improved Header Compression for TCP/IP over Wireless Links. IEEE Electron. Lett., 1958–1960 (2000)Google Scholar
  19. 19.
    Bormann, C., et al.: RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed. RFC 3095, Standards Track (2001)Google Scholar
  20. 20.
    Bormann, C.: Robust Header Compression (ROHC) over PPP. RFC3241, Stand. Track (2002)Google Scholar
  21. 21.
    Jonsson, L.-E., Pelletier, G.: RObust Header Compression (ROHC): A Compression Profile for IP. RFC 3843, Stand. Track (2004)Google Scholar
  22. 22.
    David, E.T., Andreas, H., Andreas, D., Gero, D.: Robust header compression (ROHC) in next generation network processors. IEEE/ACM Trans. Netw. 13 (2005)Google Scholar
  23. 23.
    Jonsson, L.-E., Sandlund, K., Pelletier, G., Kremer, P.: Corrections and Clarifications to RFC 3095. RFC 4815, Stand. Track (2007)Google Scholar
  24. 24.
    Sandlund, K., Pelletier, G.: RObust Header Compression Version 2 (ROHCv2): Profiles for RTP, UDP, IP, ESP and UDP-Lite. RFC 5225 (Proposed Stand. Internet Eng. Task Force (2008)Google Scholar
  25. 25.
    Sandlund, K., Pelletier, G., Jonsson, L.-E.: The RObust Header Compression (ROHC) Framework. RFC 5795, Stand. Track (2010)Google Scholar
  26. 26.
    Pelletier, G., Sandlund, K., Jonsson, L.-E., West, M.: RObust Header Compression (ROHC): A Profile for TCP/IP (ROHC-TCP). RFC 6846, Stand. Track (2013)Google Scholar
  27. 27.
    Couvreur, A., Le Ny, L.-M., Minaburo, A., Rubino, G., Sericola, B., Toutain, L.: Performance Analysis of a Header Compression Protocol: The ROHC Unidirectional Mode. Springer Telecommun. Syst. 31, 85–98Google Scholar
  28. 28.
    Nuaymi, L., Bouida, N., Lahbil, N., Godlewski, P.: Headers Overhead Estimation, Header Suppression and Header Compression in WiMAX. In: Third IEEE Int. Conf. Wirel. Mob. Comput. Netw. Commun, WiMob 2007 (2007)Google Scholar
  29. 29.
    Wang, B., Schwefel, H.-P., Chua, K.C., Kutka, R., Schmidt, C.: On Implementation and Improvement of Robust Header Compression in UMTS. In: 13th IEEE Int. Symp. Pers. Indoor Mob. Radio Commun., vol. 3, pp. 1151–1155 (2002)Google Scholar
  30. 30.
    Woo, H., Jooyoung, K., Lee, M., Kwon, J.: Performance analysis of Robust Header Compression over mobile WiMAX. In: 10th Int. Conf. on Adv. Commun. Technol. ICACT 2008, vol. 3, pp. 1742–1746 (2008)Google Scholar
  31. 31.
    Fitzek, F.H.P., Schulte, G., Piri, E., Pinola, J., Katz, M.D., Huusko, J., Pentikousis, K., Seeling, P.: Robust Header Compression for WiMAX Femto Cells. In: WiMAX Evolution: Emerging Technologies and Applications, pp. 183–197 (2009)Google Scholar
  32. 32.
    Chong, Y.-W., Mohamad, I.J., Wan, T.-C.: Header Compression Scheme over Hybrid Satellite-WiMAX Network. In: Wyld, D.C., Wozniak, M., Chaki, N., Meghanathan, N., Nagamalai, D. (eds.) NeCoM/WeST/WiMoN 2011. CCIS, vol. 197, pp. 167–176. Springer, Heidelberg (2011)Google Scholar
  33. 33.
    Universal Mobile Telecommunications System (UMTS): LTE: Architecture and functional description (3GPP TS 36.000 series, Release 9)Google Scholar
  34. 34. (available online as on January 2012)
  35. 35.
    Beming, P.: Lte-sae architecture and performance. Ericsson Rev. 20(3) (2007)Google Scholar
  36. 36.
    Nossenson, R.: Long-Term Evolution Network Architecture. In: IEEE Int. Conf. COMCAS, pp. 1–4 (2009)Google Scholar
  37. 37.
    Venmani, D.P., Duprez, M., Ibrahim, H., Gourhant, Y., Boucheret, M.-L.: Impacts of IPv6 on Robust Header Compression in LTE Mobile Networks. In: ICNS 2012 Eighth Int. Conf. Netw. Serv. IARIA (2012)Google Scholar
  38. 38.
    Naidu, D., Tapadiya, R.: Implementation of Header Compression in 3GPP LTE. In: Sixth Int. Conf. Inf. Technol. New Gener. TNG 2009, pp. 570–574 (2009)Google Scholar
  39. 39.
    AB. Effnet: An Introduction to IPv6 Header Compression. white pap (2004) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • S. A. B. Awwad
    • 1
  • C. K. Ng
    • 2
  • N. K. Noordin
    • 1
  • B. M. Ali
    • 1
  • F. Hashim
    • 1
  • N. H. A. Ismail
    • 1
  1. 1.Department of Computer and Communication Systems, Faculty of EngineeringUniversiti Putra Malaysia, UPM SerdangSelangorMalaysia
  2. 2.Institute of GerontologyUniversiti Putra Malaysia, UPM SerdangSelangorMalaysia

Personalised recommendations