Cesium Environmental Monitoring System for Assaying Temporal Changes in Atomic Disintegration Products Using Laser-Induced Breakdown Spectroscopy

  • S. Ikezawa
  • T. Ueda
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 11)


In this work, a new method for real-time in-situ environmental monitoring of measured radioactive elements is presented. Currently, germanium semiconductor detectors are used for the analysis of radioactive materials. Germanium semiconductor detectors exhibit sensitivities much higher than those exhibited by other analytical instrumentation techniques. However, the equipment is lab-based and cannot address the need for on-site monitoring. Moving radioactive samples is strictly legally prohibited for safety reasons. The frequency of use is limited by the facility installation space, workforce supply considerations regarding safety, legal considerations for carrying and storing radioactive samples, and waste disposal methods. The presented method using laser-induced breakdown spectroscopy (LIBS) offers an affordable sensing system that can be applied at point-of-use for environmental analyses to provide an indication of impending problems. The applicable range of conventional LIBS, which has been used only to determine the elemental composition, is expanded to obtain an estimate of the isotope ratio by measuring the variation due to temporal changes in the atomic disintegration products. This method takes full advantage of LIBS, such that no pretreatment of the measured sample is required. In this work, a confirmation test for the LIBS measurement of cesium and barium based on the results of the disintegration of cesium is demonstrated as part of a preliminary survey for developing a monitoring system for actual radioactive materials.


environmental monitoring in situ analysis optical methods laser-induced breakdown spectrometry laser-induced plasma radioactive measurement time-resolved spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fabre, C., Maurice, S., Cousin, A., Wiens, R.C., Forni, O., Sautter, V., Guillaume, D.: Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument. Spectrochimica Acta Part B 66(3-4), 280–289 (2011)CrossRefGoogle Scholar
  2. 2.
    Maruyama, Y., Blacksberg, J., Charbon, E.: A 1024×8 700ps time-gated SPAD line sensor for laser Raman spectroscopy and LIBS in space and rover-based planetary exploration. In: 2013 IEEE International Solid-State Circuits Conference (ISSCC 2013), pp. 110–112 (2013)Google Scholar
  3. 3.
    Sobron, P., Wang, A., Sobron, F.: Extraction of compositional and hydration information of sulfates from laser-induced plasma spectra recorded under Mars tmospheric conditions — Implications for ChemCam investigations on Curiosity rover. Spectrochimica Acta Part B 68(1-16) (2012)Google Scholar
  4. 4.
    McCanta, M.C., Dobosh, P.A., Dyar, M.D., Newsom, H.E.: Testing the veracity of LIBS analyses on Mars using the LIBSSIM program. Planetary and Space Science 81(48-54) (2013)Google Scholar
  5. 5.
    Roger, R.C., et al.: The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Body unit and combined system tests. Space Science Reviews 170(1-4), 167–227 (2012)CrossRefGoogle Scholar
  6. 6.
    Cremers, D.A., Beddingfield, A., Smithwick, R., Chinni, R.C., Jones, C.R., Beardsley, B., Karch, L.: Monitoring Uranium, Hydrogen, and Lithium and Their Isotopes Using a Compact Laser-Induced Breakdown Spectroscopy (LIBS) Probe and High-Resolution Spectrometer. Applied Spectroscopy 66(3), 250–261 (2012)CrossRefGoogle Scholar
  7. 7.
    Chinni, R.C., Cremers, D.A., Radziemski, L.J., Bostian, M., Northrup, C.N.: Detection of Uranium Using Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy 63(11), 1238–1250 (2009)CrossRefGoogle Scholar
  8. 8.
    Fichet, P., Mauchien, P., Moulin, C.: Determination of Impurities in Uranium and Plutonium Dioxides by Laser-Induced Breakdown Spectroscopy. Appl. Spectrosc. 53, 1111 (1999)CrossRefGoogle Scholar
  9. 9.
    Young, J., Botheroyd, I.M., Whitehouse, A.I.: Remote Analysis of Steels and Other Solid Materials Using Laser-Induced Breakdown Spectroscopy (LIBS). In: Conference on Lasers and Electro-Optics Europe, CLEO 1998, p. 201 (September 1998)Google Scholar
  10. 10.
    Penin, S.T., Chistyakova, L.K.: Uranium detection in aerosol particles on emission spectra of a laser plasma. J. Aerosol Sci. (27 Suppl.1), 333–334 (1996)Google Scholar
  11. 11.
    Shen, X.K., Lu, Y.F.: Detection of uranium in solids by using laser-induced breakdown spectroscopy combined with laser-induced fluorescence. Applied Optics 47(11), 1810–1815 (2008)CrossRefGoogle Scholar
  12. 12.
    Wachter, J.R., Cremers, D.A.: Determination of Uranium in Solution Using Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy 41(6), 1042–1048 (1987)CrossRefGoogle Scholar
  13. 13.
    Sarkar, A., Alamelu, D., Aggarwal, S.K.: Determination of thorium and uranium in solution by laser-induced breakdown spectrometry. Applied Optics 47(31), G58–G64 (2008)Google Scholar
  14. 14.
    Emmert, L.A., Chinni, R.C., Cremers, D.A., Jones, C.R., Rudolph, W.: Comparative study of femtosecond and nanosecond laser-induced breakdown spectroscopy of depleted uranium. Applied Optics 50(3), 313–317 (2011)CrossRefGoogle Scholar
  15. 15.
    Frey, L., Kubodera, S., Wisoff, P.J., Sauerbrey, R.: Spectroscopy and kinetics of the ionic cesium fluoride excimer excited by a laser-produced plasma. JOSA B 6(8), 1529–1535 (1989)CrossRefGoogle Scholar
  16. 16.
    Ikezawa, S., Wakamatsu, M., Ueda, T.: Detection of Cesium from Pollucite Using Laser-Induced Breakdown Spectroscopy. Solid State Phenomena 199, 285–290 (2013)CrossRefGoogle Scholar
  17. 17.
    Cremers, D.A., Radziemski, L.J., Loree, T.R.: Spectrochemical Analysis of Liquids Using the Laser Spark. Applied Spectroscopy 38(5), 721–729 (1984)CrossRefGoogle Scholar
  18. 18.
    Vadillo, J.M., Vadillo, I., Carrasco, F., Laserna, J.J.: Spatial distribution profiles of magnesium and strontium in speleothems using laser-induced breakdown spectrometry. Fresenius J. Anal. Chem. 361(2), 119–123 (1998)CrossRefGoogle Scholar
  19. 19.
    Yamamoto, K.Y., Cremers, D.A., Ferris, M.J., Foster, L.E.: Detection of Metals in the Environment Using a Portable Laser-Induced Breakdown Spectroscopy Instrument. Applied Spectroscopy 50(2), 222–233 (1996)CrossRefGoogle Scholar
  20. 20.
    Mao, X., Bol’shakov, A.A., Choi, I., McKay, C.P., Perry, D.L., Sorkhabi, O., Russo, R.E.: Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes. Spectrochimica Acta Part B: Atomic Spectroscopy 66(11–12), 767–775 (2011)CrossRefGoogle Scholar
  21. 21.
    Cremers, D.A., Barefield II, J.E., Koskelo, A.C.: Remote elemental analysis by laser-induced breakdown spectroscopy using a fiber-optic cable. Applied Spectroscopy 49(6), 857–860 (1995)CrossRefGoogle Scholar
  22. 22.
    Multari, R.A., Foster, L.E., Cremers, D.A., Ferris, M.J.: Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy. Applied Spectroscopy 50(12), 1483–1499 (1996)CrossRefGoogle Scholar
  23. 23.
    Eppler, A.S., Cremers, D.A., Hickmott, D.D., Ferris, M.J., Koskelo, A.C.: Matrix Effects in the Detection of Pb and Ba in Soils Using Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy 50(9), 1175–1181 (1996)CrossRefGoogle Scholar
  24. 24.
    Ikezawa, S., Wakamatsu, M., Pawlat, J., Ueda, T.: Sensing system for multiple measurements of trace elements using laser-induced breakdown spectroscopy. IEEJ Transactions on Sensors and Micromachines 129(4), 115–119 (2009)CrossRefGoogle Scholar
  25. 25.
    Kuwako, A., Uchida, Y., Maeda, K.: Supersensitive detection of sodium in water with use of dual-pulse laser-induced breakdown spectroscopy. Applied Optics 42(30), 6052–6056 (2003)CrossRefGoogle Scholar
  26. 26.
    Kawada, Y., Yamada, T.: Isotope News, vol. 697, pp. 16–20 (2012)Google Scholar
  27. 27.
    Hino, Y.: Isotope News, vol. 690, pp. 20–24 (2011)Google Scholar
  28. 28.
    Aoyama, M.: Radioisotopes, vol. 55, pp. 429–438 (2006)Google Scholar
  29. 29.
    IAEA-TECDOC-1162, Generic procedures for assessment and response during a radiological emergency, p. 99Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Graduate School of Information Production and SystemsWaseda UniversityKitakyushuJapan

Personalised recommendations