Design of High-Resolution Optical Systems for Fast and Accurate Surface Reconstruction

  • R. MaraniEmail author
  • M. Nitti
  • G. Cicirelli
  • T. D’Orazio
  • E. Stella
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 11)


In the last few decades, virtual reconstruction of objects has grown interest in the field of quality control. As known, smart manufactures need automatic systems for the real-time investigation of production yields, i.e. techniques, methods and technologies devoted to the analysis of quality. In particular, high-resolution systems are required for the measurement of surface profiles aimed to the detection and characterization of small defects, with sizes reaching the limit of few microns. This book Chapter describes the procedure for the design of high-resolution and high-accuracy laser scanning probes based on triangulation techniques for the exhaustive reconstruction of objects. Drawbacks and limitations will be discussed, with particular focus on occlusion problems due to possible undercut surfaces within the testing objects. A complete description of novel techniques will be thus provided together with a demonstration of a resulting optical probe. Challenging metal objects, namely drilling tools, will be then investigated, proving measurement resolutions close to the physical diffraction limit.


3D laser triangulation scanners high resolution surface reconstruction surface defects quality control tool inspection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Milroy, M.J., Weir, D.J., Bradley, C., Vickers, G.W.: Reverse engineering employing a 3D laser scanner: A case study. The International Journal of Advanced Manufacturing Technology 12(2), 111–121 (1996)CrossRefGoogle Scholar
  2. 2.
    Son, S., Park, H., Lee, K.H.: Automated laser scanning system for reverse engineering and inspection. International Journal of Machine Tools & Manufacture 42, 889–897 (2002)CrossRefGoogle Scholar
  3. 3.
    Aung, S.C., Ngim, R.C.K., Lee, S.T.: Evaluation of the laser scanner as a surface measuring tool and its accuracy compared with direct facial anthropometric measurements. British Journal of Plastic Surgery 48(8), 551–558 (1995)CrossRefGoogle Scholar
  4. 4.
    Kau, C.H., Richmond, S., Zhurovc, A.I., Knox, J., Chestnutt, I., Hartles, F., Playle, R.: Reliability of measuring facial morphology with a 3-dimensional laser scanning system. American Journal of Orthodontics and Dentofacial Orthopedics 128(4), 424–430 (2005)CrossRefGoogle Scholar
  5. 5.
    Marino, F., De Ruvo, P., De Ruvo, G., Nitti, M., Stella, E.: HiPER 3-D: An Omnidirectional Sensor for High Precision Environmental 3-D Reconstruction. IEEE Transaction on Industrial Electronics 59(1), 579–591 (2012)CrossRefGoogle Scholar
  6. 6.
    Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The Digital Michelangelo Project: 3D Scanning of Large Statues. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 131–144 (2000)Google Scholar
  7. 7.
    Kampel, M., Sablatnig, R.: Rule based system for archaeological pottery classification. Pattern Recognition Letters 28(6), 740–747 (2007)CrossRefGoogle Scholar
  8. 8.
    Sansoni, G., Trebeschi, M., Docchio, F.: State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation. Sensors 9, 568–601 (2009)CrossRefGoogle Scholar
  9. 9.
    Zhang, G., Veale, R., Charlton, T., Borchardt, B., Hocken, R.: Error Compensation of Coordinate Measuring Machines. CIRP Annals - Manufacturing Technology 34(1), 445–448 (1985)CrossRefGoogle Scholar
  10. 10.
    Donmez, M.A., Blomquist, D.S., Hocken, R.J., Liu, C.R., Barash, M.M.: A general methodology for machine tool accuracy enhancement by error compensation. Precision Engineering 8(4), 187–196 (1986)CrossRefGoogle Scholar
  11. 11.
    Teeuwsen, J.W.M.C., Soons, J.A., Schellekens, P.H.J., van der Wolf, A.C.H.: A General Method for Error Description of CMMs Using Polynomial Fitting Procedures. CIRP Annals - Manufacturing Technology 38(1), 505–510 (1989)CrossRefGoogle Scholar
  12. 12.
    Cheng, W.L., Menq, C.H.: Integrated laser/CMM system for the dimensional inspection of objects made of soft material. The International Journal of Advanced Manufacturing Technology 10(1), 36–45 (1995)CrossRefGoogle Scholar
  13. 13.
    Schwenke, H., Wäldele, F., Weiskirch, C., Kunzmann, H.: Opto-tactile Sensor for 2D and 3D Measurement of Small Structures on Coordinate Measuring Machines. CIRP Annals - Manufacturing Technology 50(1), 361–364 (2001)CrossRefGoogle Scholar
  14. 14.
    Lopez-Escogido, D., De Luca, A.: 2-D High Precision Laser for Detecting Small Defects in PCBs. In: 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–6 (2012)Google Scholar
  15. 15.
    Ke, X., Chaolin, Y.: On-Line Defect Detection Algorithms for Surface Inspection of Hot Rolled Strips. In: International Conference on Mechanic Automation and Control Engineering (MACE), pp. 2350–2353 (2010)Google Scholar
  16. 16.
    Qun, Z., Wenbo, H., Chenghao, J., Yutong, J., Jinhua, Y.: Studies on Portable 3D Laser Scanner for Surface Flaws. In: Second International Conference on Instrumentation & Measurement, Computer, Communication and Control, pp. 1297–1299 (2012)Google Scholar
  17. 17.
    Zhang, L., Zhao, M., Zou, Y., Gao, S.: A New Surface Inspection Method of TWBS Based on Active Laser-triangulation. In: Proceedings of the 7th World Congress on Intelligent Control and Automation, pp. 1174–1179 (2008)Google Scholar
  18. 18.
    Zhou, A., Guo, J., Shao, W.: Automated Detection of Surface Defects on Sphere Parts Using Laser and CDD Measurements. In: IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society, pp. 2666–2671 (2011)Google Scholar
  19. 19.
    Kowal, J., Sioma, A.: Surface defects detection using a 3D vision system. In: 13th International Carpathian Control Conference (ICCC), pp. 382–387 (2012)Google Scholar
  20. 20.
    International Organization for Standardization, ISO 3685 Tool-life testing with single-point turning tools (1993)Google Scholar
  21. 21.
    UNI, UNI ISO 8688-1/2 (1998) Google Scholar
  22. 22.
    Dutta, S., Pal, S.K., Mukhopadhyay, S., Sen, R.: Application of digital image processing in tool condition monitoring: A review. CIRP Journal of Manufacturing Science and Technology 6(3), 212–232 (2013)CrossRefGoogle Scholar
  23. 23.
    Su, J., Huang, C., Tarng, Y.: An automated flank wear measurement of microdrills using machine vision. Journal of Materials Processing Technology 180, 328–335 (2006)CrossRefGoogle Scholar
  24. 24.
    Duan, G., Chen, Y.-W., Sukegawa, T.: Automatic optical flank wear measurement of microdrills using level set for cutting plane segmentation. Machine Vision and Applications 21, 667–676 (2010)CrossRefGoogle Scholar
  25. 25.
    Malekian, M., Park, S.S., Jun, M.B.: Tool wear monitoring of micro-milling operations. Journal of Materials Processing Technology 209(10), 4903–4914 (2009)CrossRefGoogle Scholar
  26. 26.
    Tansel, I., Arkan, T., Bao, W., Mahendrakar, N., Shisler, B., Smith, D., McCool, M.: Tool wear estimation in micro-machining: Part I. International Journal of Machine Tools and Manufacture 40, 599–608 (2000)CrossRefGoogle Scholar
  27. 27.
    Tansel, I., Arkan, T., Bao, W., Mahendrakar, N., Shisler, B., Smith, D., McCool, M.: Tool wear estimation in micro-machining: Part II. International Journal of Machine Tools and Manufacture 40, 609–620 (2000)CrossRefGoogle Scholar
  28. 28.
    Jemielniak, K., Arrazola, P.J.: Application of AE and cutting force signals in tool condition monitoring in micro-milling. CIRP Journal of Manufacturing Science and Technology 1, 97–102 (2008)CrossRefGoogle Scholar
  29. 29.
    Zhu, K., Wong, Y.S., Hong, G.S.: Multi-category micro-milling tool wear monitoring with continuous hidden markov models. Mechanical Systems and Signal Processing 23(2), 547–560 (2009)CrossRefGoogle Scholar
  30. 30.
    Ng, W., Moon, K.S., et al.: Measurement of 3-d tool wear based on focus error and micro-coordinate measuring system. In: Proceedings of 16th Annual Meeting of American Society for Precision Engineering (ASPE), Virginia, USA (2001)Google Scholar
  31. 31.
    Xi, F., Shu, C.: CAD-based path planning for 3-D line laser scanning. Computer-Aided Design 31(7), 473–479 (1999)CrossRefzbMATHGoogle Scholar
  32. 32.
    Mahmud, M., Joannic, D., Roy, M., Isheil, A., Fontaine, J.F.: 3D part inspection path planning of a laser scanner with control on the uncertainty. Computer-Aided Design 43, 345–355 (2011)CrossRefGoogle Scholar
  33. 33.
    Zhao, H., Kruth, J.P., Van Gestel, N., Boeckmans, B.: Philip Bleys, Automated dimensional inspection planning using the combination of laser scanner and tactile probe. Measurement 45(5), 1057–1066 (2012)CrossRefGoogle Scholar
  34. 34.
  35. 35.
  36. 36.
    Naidu, D.K., Fisher, R.B.: A Comparative Analysis of Algorithms for Determining the Peak Position of a Stripe to Sub-pixel Accuracy. In: British Machine Vision Association Conference (BMVC), pp. 217–225 (1991)Google Scholar
  37. 37.
  38. 38.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • R. Marani
    • 1
    Email author
  • M. Nitti
    • 1
  • G. Cicirelli
    • 1
  • T. D’Orazio
    • 1
  • E. Stella
    • 1
  1. 1.Institute of Intelligent Systems for Automation (ISSIA)National Research Council (CNR)BariItaly

Personalised recommendations