Skip to main content

Modelling of Sensing Performance of Electrostrictive Capacitive Sensors

  • Chapter

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 11))

Abstract

Electrostriction is the quadratic coupling between the strain developed in a material and the electric field applied, while piezoelectricity is a linear coupling mechanism existing in a material without center of symmetry. Electrostrictive capacitive sensors have many advantages over vacuum or air gap capacitive sensors. Electrostrictive materials show reproducible, non-hysteric and tunable strain response. Electrostrictive dielectric material sandwiched between two electrodes in a capacitive sensor plays a very important role in performance of the sensor. The dielectric material to be selected is required to possess good electromechanical properties like high strain, high permittivity, good breakdown strength etc.

Standard equations are available for calculation of electrically induced strain in dielectric material and researchers have simplified the standard equation for calculation of electrically induced strain in dielectric material of the sensor. Simplification of equations for six different materials has been analyzed. In case of one simplified equation, error has been found in the range of underestimation from 96% to 3273% and in case of other equation, range of error is from underestimation of 36% to overestimation of 1842%. These errors occur because researchers have neglected many parameters like edge effect, contribution from lateral stress etc., while simplifying these equations.

Electrostrictive dielectric materials have good electromechanical properties for various applications including sensors, but to further enhance properties like permittivity, tensile strength etc. of the dielectric material used in the sensor, nano fillers are incorporated into the dielectric material. In this work, study has been done on two filler materials, TiO2 and ZnO and it is found that the increase in permittivity is more in the materials filled with TiO2 in comparison to ZnO filled materials for same level of filler concentration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krakovsky, I., Romijn, T., Posthuma de Boer, A.: A few remarks on the electrostriction of elastomers. Journal of Applied Physics 85(1), 628–629 (1999)

    Article  Google Scholar 

  2. Cady, W.G.: International Critical Tables, vol. 6, p. 207. McGraw-Hill, New York (1929)

    Google Scholar 

  3. Thakur, O.P., Singh, A.K.: Errors in estimation of electrically induced deformations in elastic dielectrics. Materials Sciences Research Journal 2(3/4) (2008)

    Google Scholar 

  4. Li, B., Liu, L., Wu, J., Zhu, Z., Chen, H.: Electrostriction in dielectric elastomer: Effect on electromechanical actuation. In: Electro Active Polymer Actuators and Devices, EAPAD 2010, Proc. of SPIE, vol. 7642, p. 764212 (2010)

    Google Scholar 

  5. Leng, J., Liu, L., Liu, Y., Yu, K., Sun, S.: Electromechanical stability of dielectric elastomer. Applied Physics Letters 94, 211901 (2009)

    Article  Google Scholar 

  6. Lee, H.Y., Peng, Y., Shkel, Y.M.: Strain-dielectric response of dielectrics as foundation for electrostriction stresses. Journal of Applied Physics 98, 74104 (2005)

    Article  Google Scholar 

  7. Shkel, Y.M., Ferrier, N.J.: Electrostriction Enhancement of Solid-State Capacitance Sensing. IEEE/ASME Transactions on Mechatronics 8(3), 318–325 (2003)

    Article  Google Scholar 

  8. Liu, Y., Liu, L., Zhang, Z., Leng, J.: Dielectric elastomer film actuators: Characterization, experiment and analysis. Smart Materials and Structures 18, 95024 (2009)

    Article  Google Scholar 

  9. Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-Speed Electrically Actuated Elastomers with Strain Greater than 100%. Science 287(5454), 836–839 (2000)

    Article  Google Scholar 

  10. Smela, E., Inganäs, O., Lundström, I.: Controlled folding of micrometer-size structures. Science 268, 1735–1738 (1995)

    Article  Google Scholar 

  11. Pelrine, R.E., Kornbluh, R.D., Joseph, J.P.: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A: Physical 64(1), 77–85 (1998)

    Article  Google Scholar 

  12. Plante, J.S., Dubowsky, S.: On the Properties of Dielectric Elastomer Actuators and Their Design Implications. Smart Materials and Structures 16(20), S227-S236 (2007)

    Google Scholar 

  13. Wissler, M., Mazza, E.: Electromechanical coupling in dielectric elastomer actuators. Sensors and Actuators A: Physical 138(2), 384–393 (2007)

    Article  Google Scholar 

  14. Kofod, G., Paajanen, M., Bauer, S.: Self organized minimum-energy structures for dielectric elastomer actuators. Applied Physics A- Materials Science & Processing 85(2), 141–143 (2006)

    Article  Google Scholar 

  15. Liu, L.W., Fan, J.M., Zhang, Z., Shi, L., Liu, Y.J., Leng, J.S.: Analysis of the Novel Strain Responsive Actuators of Silicone Dielectric Elastomer. Advanced Materials Research 47-50, 298–301 (2008)

    Google Scholar 

  16. Miao, F., Tao, B., Sun, L., Liu, T., You, J., Wang, L., Chu, P.K.: Capacitive humidity sensing behavior of ordered Ni/Si microchannel plate nanocomposites. Sensors and Actuators A: Physical 160, 48–53 (2010)

    Article  Google Scholar 

  17. Lacour, S.P., Wagner, S., Huang, Z., Suo, Z.: Stretchable gold conductors on elastomeric substrates. Applied Physics Letters 82(15), 2404–2406 (2003)

    Article  Google Scholar 

  18. Zhao, X., Suo, Z.: Method to analyze electromechanical stability of dielectric elastomers. Applied Physics Letters 91, 61921 (2007)

    Article  Google Scholar 

  19. Díaz-Calleja, R., Riande, E., Sanchis, M.J.: On electromechanical stability of dielectric elastomers. Applied Physics Letters 93, 101902 (2008)

    Article  Google Scholar 

  20. Zhao, X., Hong, W., Suo, Z.: Electromechanical hysteresis and coexistent states in dielectric elastomers. Physical Review B 76, 134113 (2007)

    Article  Google Scholar 

  21. Liu, Y., Liu, L., Sun, S., Leng, J.: An investigation on electromechanical stability of dielectric elastomer undergoing large deformation. Smart Materials and Structures 18, 95040 (2009)

    Article  Google Scholar 

  22. Doebelin, E.O.: Measurement systems: Application and design, 4th edn. Mcgraw-Hill, Inc. (1990)

    Google Scholar 

  23. Holman, J.P.: Experimental methods for engineers, 6th edn. Mcgraw-Hill, Inc. (1994)

    Google Scholar 

  24. Thakur, O.P., Singh, A.K.: Modelling of capacitive censor filled with elastic dielectrics and its advantages. In: 3rd International Conference on Sensing Technology ICST 2008, Taiwan, pp. 467–471 (2008)

    Google Scholar 

  25. Thakur, O.P., Agrawal, N.: Mathematical modelling of error contribution for various dimensions of capacitive sensors from centimetric to nanometric Range. Advanced Studies in Theoretical Physics 7(1), 1–9 (2013)

    MATH  Google Scholar 

  26. Kofod, G., Sommer-Larsen, P., Kornbluh, R., Pelrine, R.: Actuation Response of Polyacrylate Dielectric Elastomers. Journal of Intelligent Material Systems and Structures 14(12), 787–793 (2003)

    Article  Google Scholar 

  27. Khodaparast, P., Ghaffarian, S.R., Khosroshahi, M.R., Yousefimehr, N., Zamani, D.: Electrode structures in high strain actuator technology. Journal of Optoelectronics and Advanced Materials 9(11), 3585–3591 (2007)

    Google Scholar 

  28. Shkel, Y.M., Klingenberg, D.J.: Material parameters for electrostriction. Journal of Applied Physics 80(8), 4566–4572 (1996)

    Article  Google Scholar 

  29. Zhang, Q.M., Su, J., Kim, C.H., Ting, R., Capps, R.: An experimental investigation of electromechanical responses in a polyurethane elastomer. Journal of Applied Physics 81(6), 2770–2776 (1997)

    Article  Google Scholar 

  30. Thakur, O.P., Singh, A.K.: Electrostriction and electromechanical coupling in elastic dielectrics at nanometric interfaces. Materials Science - Poland 27(3), 839–850 (2009)

    Google Scholar 

  31. Shkel, Y.M.: Electrostriction: Material parameters and stress/strain constitutive relations. Philosophical Magazine 87(11), 1743–1767 (2007)

    Article  Google Scholar 

  32. Elansezhian, R., Saravanan, L.: Effect of nano silica fillers on mechanical and abrasive wear behaviour of vinyl ester resin. International Journal of Applied Research in Mechanical Engineering 1(1), 105–108 (2011)

    Google Scholar 

  33. Rocha, J.G., Paleo, A.J., Van Hattum, F.W.J., Lanceros-Mendez, S.: Polypropylene-Carbon nanofiber composites as strain-gauge sensor. IEEE Sensors Journal 13(7), 2603–2609 (2013)

    Article  Google Scholar 

  34. Singha, S., Thomas, M.J.: Dielectric properties of epoxy nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation 15(1), 12–23 (2008)

    Article  Google Scholar 

  35. Thakur, O.P., Agrawal, N.: Effect of Fillers on Electromechanical Properties of Composites for Potential Sensing Applications. IEEE Sensors Journal (April 2014), doi:10.1109/JSEN.2014.2314775.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Thakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thakur, O.P., Agrawal, N. (2015). Modelling of Sensing Performance of Electrostrictive Capacitive Sensors. In: Mason, A., Mukhopadhyay, S., Jayasundera, K. (eds) Sensing Technology: Current Status and Future Trends III. Smart Sensors, Measurement and Instrumentation, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-10948-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10948-0_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10947-3

  • Online ISBN: 978-3-319-10948-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics