Modelling of Sensing Performance of Electrostrictive Capacitive Sensors

  • O. P. Thakur
  • Nidhi Agrawal
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 11)


Electrostriction is the quadratic coupling between the strain developed in a material and the electric field applied, while piezoelectricity is a linear coupling mechanism existing in a material without center of symmetry. Electrostrictive capacitive sensors have many advantages over vacuum or air gap capacitive sensors. Electrostrictive materials show reproducible, non-hysteric and tunable strain response. Electrostrictive dielectric material sandwiched between two electrodes in a capacitive sensor plays a very important role in performance of the sensor. The dielectric material to be selected is required to possess good electromechanical properties like high strain, high permittivity, good breakdown strength etc.

Standard equations are available for calculation of electrically induced strain in dielectric material and researchers have simplified the standard equation for calculation of electrically induced strain in dielectric material of the sensor. Simplification of equations for six different materials has been analyzed. In case of one simplified equation, error has been found in the range of underestimation from 96% to 3273% and in case of other equation, range of error is from underestimation of 36% to overestimation of 1842%. These errors occur because researchers have neglected many parameters like edge effect, contribution from lateral stress etc., while simplifying these equations.

Electrostrictive dielectric materials have good electromechanical properties for various applications including sensors, but to further enhance properties like permittivity, tensile strength etc. of the dielectric material used in the sensor, nano fillers are incorporated into the dielectric material. In this work, study has been done on two filler materials, TiO2 and ZnO and it is found that the increase in permittivity is more in the materials filled with TiO2 in comparison to ZnO filled materials for same level of filler concentration.


electrostrictive capacitive sensor dielectric material strain permittivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krakovsky, I., Romijn, T., Posthuma de Boer, A.: A few remarks on the electrostriction of elastomers. Journal of Applied Physics 85(1), 628–629 (1999)CrossRefGoogle Scholar
  2. 2.
    Cady, W.G.: International Critical Tables, vol. 6, p. 207. McGraw-Hill, New York (1929)Google Scholar
  3. 3.
    Thakur, O.P., Singh, A.K.: Errors in estimation of electrically induced deformations in elastic dielectrics. Materials Sciences Research Journal 2(3/4) (2008)Google Scholar
  4. 4.
    Li, B., Liu, L., Wu, J., Zhu, Z., Chen, H.: Electrostriction in dielectric elastomer: Effect on electromechanical actuation. In: Electro Active Polymer Actuators and Devices, EAPAD 2010, Proc. of SPIE, vol. 7642, p. 764212 (2010)Google Scholar
  5. 5.
    Leng, J., Liu, L., Liu, Y., Yu, K., Sun, S.: Electromechanical stability of dielectric elastomer. Applied Physics Letters 94, 211901 (2009)CrossRefGoogle Scholar
  6. 6.
    Lee, H.Y., Peng, Y., Shkel, Y.M.: Strain-dielectric response of dielectrics as foundation for electrostriction stresses. Journal of Applied Physics 98, 74104 (2005)CrossRefGoogle Scholar
  7. 7.
    Shkel, Y.M., Ferrier, N.J.: Electrostriction Enhancement of Solid-State Capacitance Sensing. IEEE/ASME Transactions on Mechatronics 8(3), 318–325 (2003)CrossRefGoogle Scholar
  8. 8.
    Liu, Y., Liu, L., Zhang, Z., Leng, J.: Dielectric elastomer film actuators: Characterization, experiment and analysis. Smart Materials and Structures 18, 95024 (2009)CrossRefGoogle Scholar
  9. 9.
    Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-Speed Electrically Actuated Elastomers with Strain Greater than 100%. Science 287(5454), 836–839 (2000)CrossRefGoogle Scholar
  10. 10.
    Smela, E., Inganäs, O., Lundström, I.: Controlled folding of micrometer-size structures. Science 268, 1735–1738 (1995)CrossRefGoogle Scholar
  11. 11.
    Pelrine, R.E., Kornbluh, R.D., Joseph, J.P.: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A: Physical 64(1), 77–85 (1998)CrossRefGoogle Scholar
  12. 12.
    Plante, J.S., Dubowsky, S.: On the Properties of Dielectric Elastomer Actuators and Their Design Implications. Smart Materials and Structures 16(20), S227-S236 (2007)Google Scholar
  13. 13.
    Wissler, M., Mazza, E.: Electromechanical coupling in dielectric elastomer actuators. Sensors and Actuators A: Physical 138(2), 384–393 (2007)CrossRefGoogle Scholar
  14. 14.
    Kofod, G., Paajanen, M., Bauer, S.: Self organized minimum-energy structures for dielectric elastomer actuators. Applied Physics A- Materials Science & Processing 85(2), 141–143 (2006)CrossRefGoogle Scholar
  15. 15.
    Liu, L.W., Fan, J.M., Zhang, Z., Shi, L., Liu, Y.J., Leng, J.S.: Analysis of the Novel Strain Responsive Actuators of Silicone Dielectric Elastomer. Advanced Materials Research 47-50, 298–301 (2008)Google Scholar
  16. 16.
    Miao, F., Tao, B., Sun, L., Liu, T., You, J., Wang, L., Chu, P.K.: Capacitive humidity sensing behavior of ordered Ni/Si microchannel plate nanocomposites. Sensors and Actuators A: Physical 160, 48–53 (2010)CrossRefGoogle Scholar
  17. 17.
    Lacour, S.P., Wagner, S., Huang, Z., Suo, Z.: Stretchable gold conductors on elastomeric substrates. Applied Physics Letters 82(15), 2404–2406 (2003)CrossRefGoogle Scholar
  18. 18.
    Zhao, X., Suo, Z.: Method to analyze electromechanical stability of dielectric elastomers. Applied Physics Letters 91, 61921 (2007)CrossRefGoogle Scholar
  19. 19.
    Díaz-Calleja, R., Riande, E., Sanchis, M.J.: On electromechanical stability of dielectric elastomers. Applied Physics Letters 93, 101902 (2008)CrossRefGoogle Scholar
  20. 20.
    Zhao, X., Hong, W., Suo, Z.: Electromechanical hysteresis and coexistent states in dielectric elastomers. Physical Review B 76, 134113 (2007)CrossRefGoogle Scholar
  21. 21.
    Liu, Y., Liu, L., Sun, S., Leng, J.: An investigation on electromechanical stability of dielectric elastomer undergoing large deformation. Smart Materials and Structures 18, 95040 (2009)CrossRefGoogle Scholar
  22. 22.
    Doebelin, E.O.: Measurement systems: Application and design, 4th edn. Mcgraw-Hill, Inc. (1990)Google Scholar
  23. 23.
    Holman, J.P.: Experimental methods for engineers, 6th edn. Mcgraw-Hill, Inc. (1994)Google Scholar
  24. 24.
    Thakur, O.P., Singh, A.K.: Modelling of capacitive censor filled with elastic dielectrics and its advantages. In: 3rd International Conference on Sensing Technology ICST 2008, Taiwan, pp. 467–471 (2008)Google Scholar
  25. 25.
    Thakur, O.P., Agrawal, N.: Mathematical modelling of error contribution for various dimensions of capacitive sensors from centimetric to nanometric Range. Advanced Studies in Theoretical Physics 7(1), 1–9 (2013)zbMATHGoogle Scholar
  26. 26.
    Kofod, G., Sommer-Larsen, P., Kornbluh, R., Pelrine, R.: Actuation Response of Polyacrylate Dielectric Elastomers. Journal of Intelligent Material Systems and Structures 14(12), 787–793 (2003)CrossRefGoogle Scholar
  27. 27.
    Khodaparast, P., Ghaffarian, S.R., Khosroshahi, M.R., Yousefimehr, N., Zamani, D.: Electrode structures in high strain actuator technology. Journal of Optoelectronics and Advanced Materials 9(11), 3585–3591 (2007)Google Scholar
  28. 28.
    Shkel, Y.M., Klingenberg, D.J.: Material parameters for electrostriction. Journal of Applied Physics 80(8), 4566–4572 (1996)CrossRefGoogle Scholar
  29. 29.
    Zhang, Q.M., Su, J., Kim, C.H., Ting, R., Capps, R.: An experimental investigation of electromechanical responses in a polyurethane elastomer. Journal of Applied Physics 81(6), 2770–2776 (1997)CrossRefGoogle Scholar
  30. 30.
    Thakur, O.P., Singh, A.K.: Electrostriction and electromechanical coupling in elastic dielectrics at nanometric interfaces. Materials Science - Poland 27(3), 839–850 (2009)Google Scholar
  31. 31.
    Shkel, Y.M.: Electrostriction: Material parameters and stress/strain constitutive relations. Philosophical Magazine 87(11), 1743–1767 (2007)CrossRefGoogle Scholar
  32. 32.
    Elansezhian, R., Saravanan, L.: Effect of nano silica fillers on mechanical and abrasive wear behaviour of vinyl ester resin. International Journal of Applied Research in Mechanical Engineering 1(1), 105–108 (2011)Google Scholar
  33. 33.
    Rocha, J.G., Paleo, A.J., Van Hattum, F.W.J., Lanceros-Mendez, S.: Polypropylene-Carbon nanofiber composites as strain-gauge sensor. IEEE Sensors Journal 13(7), 2603–2609 (2013)CrossRefGoogle Scholar
  34. 34.
    Singha, S., Thomas, M.J.: Dielectric properties of epoxy nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation 15(1), 12–23 (2008)CrossRefGoogle Scholar
  35. 35.
    Thakur, O.P., Agrawal, N.: Effect of Fillers on Electromechanical Properties of Composites for Potential Sensing Applications. IEEE Sensors Journal (April 2014), doi:10.1109/JSEN.2014.2314775.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Applied SciencesNetaji Subhas Institute of TechnologyNew DelhiIndia

Personalised recommendations