Review of the Use of the Optical Fibers for Safety Applications in Tunnels and Car Parks: Pollution Monitoring, Fire and Explosive Gas Detection

  • M. DebliquyEmail author
  • D. Lahem
  • A. Bueno-Martinez
  • G. Ravet
  • J. -M. Renoirt
  • C. Caucheteur
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 11)


Optical fiber sensors bring to measurement systems all the advantages offered by the optical fiber technology. The potential applications for these sensors are numerous and can spread from medical diagnosis to pipe line monitoring passing through geological measurements. This chapter will focus on the applications in road tunnels and undercroft car parks monitoring. It will detail the existing optical fiber sensor methods, commercially available or under development in the field of air quality monitoring, in particular NO2 that is representative of toxic automotive pollution, flaming fire detection and combustible gas leak detection (in particular methane and hydrogen).


optical fibers gas sensors pollution fire detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu, F.T.S., Yin, S., Yu, Y.T.S.: Fiber Optic Sensors. Marcel Dekker Inc., USA (2002)CrossRefGoogle Scholar
  2. 2.
    Jones, J.D.C.: Handbook of Optical Fiber Sensing Technology – Chapitre 12: Interferometry and polarimetry for optical sensing. John Wiley & Sons (2002)Google Scholar
  3. 3.
    Wuilpart, M., Thévenaz, L.: Advanced Fiber Optics - Chapitre 8: Rayleigh scattering in optical fibers and applications to distributed measurements. CRC Press (2011)Google Scholar
  4. 4.
    Frazao, O., Correia, C., Rocco Giraldi, M.T.M., Marques, M.B., Salgado, H.M., Martinez, M.A.G., Cosata, J.C.W.A., Barbero, A.P., Baptista, J.M.: Stimulated Raman scattering and its applications in optical communications and optical sensors. The Open Optics Journal 3, 1–11 (2009)CrossRefGoogle Scholar
  5. 5.
    Thevenaz, L.: Brillouin distributed time-domain sensing in optical fibers: State of the art and perspectives. Frontiers of Optoelectronics in China 3, 13–21 (2010)CrossRefGoogle Scholar
  6. 6.
    Farahani, M.A., Gogolla, T.: Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing. Journal of Lightwave Technology 17, 1379–1391 (2009)CrossRefGoogle Scholar
  7. 7.
    Grattan, L.S., Meggitt, N.T.: Optical fiber sensor technology: Advanced, applications – Bragg gratings and distributed sensors. Kluwer Academic Publishers, Boston (2000)CrossRefGoogle Scholar
  8. 8.
    Sekimoto, S., Nakagawa, H., Okazaki, S., Fukuda, K., Asakura, S., Shigemori, T., Takahashi, S.A.: Fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide. Sensors and Actuators B: Chemical 66, 142–145 (2000)CrossRefGoogle Scholar
  9. 9.
    Arregui, F.J., Matias, I.R., Claus, R.O.: Optical fiber gas sensors based on hydrophobic alumina thin films formed by the electrostatic self-assembly monolayer process. IEEE Sensors Journal 3, 56–61 (2003)CrossRefGoogle Scholar
  10. 10.
    Kashyap, R.: Fiber Bragg gratings. Academic Press (1999)Google Scholar
  11. 11.
    Othonos, A., Kalli, K.: Fiber Bragg gratings: fundamentals and applications in telecommunications and sensing. Artech House, Norwood (1999)Google Scholar
  12. 12.
    Albert, J., Shao, L.Y., Caucheteur, C.: Tilted fiber Bragg grating sensors. Laser and Photonics Reviews 7, 83–108 (2013)CrossRefGoogle Scholar
  13. 13.
    Vengsarkar, A.M., Lemaire, P.J., Judkins, J.B., Bhatia, V., Erdogan, T., Sipe, J.E.: Long-period fiber gratings as band-rejection filters. Journal of Lightwave Technology 14, 58–65 (1996)CrossRefGoogle Scholar
  14. 14.
    Homola, J.: Surface plasmon resonance based sensors. Springer, Berlin (2006)CrossRefGoogle Scholar
  15. 15.
    American Conference of Governmental Industrial Hygienists (ACGIH). Documentation of the threshold limit values and biological exposure indices, 7th edn., Cincinnati, vol. 1-5Google Scholar
  16. 16.
    Grosjean, D., Harrison, J.: Response of chemiluminescence NOx analyzers and ultraviolet ozone analyzers to organic air pollutants. Environ. Sci. Technol. 19(9), 862–865 (1985)CrossRefGoogle Scholar
  17. 17.
    Khandpur, R.S.: Handbook of Analytical Instruments. McGraw-Hill professional (2006)Google Scholar
  18. 18.
    Chaney, L.W., McClenny, W.A.: Unique Ambient Carbon Monoxide Monitor Based on Gas Filter Correlation: Performance and Application. Environmental Science & Technology 11(13) (December 1977)Google Scholar
  19. 19.
    Jaffrezic-Renault, N., Martelet, C., Clechet, P.: Capteurs chimiques et biochimiques, Techniques de l’Ingénieur, PE 360 - R 420Google Scholar
  20. 20.
    Asch, R.: Les capteurs en instrumentation industrielle, pp. 779–807. Dunod (1991)Google Scholar
  21. 21.
    Moseley, P.T., Norris, J., Williams, D.E.: Techniques and Mechanisms in Gas Sensing. Adam Hilger (1991)Google Scholar
  22. 22.
    Zhuiykov, S., Ono, T., Yamazoe, N., Miura, N.: High-temperature NOx sensors using zirconia solid electrolyte and zinc-family oxide sensing electrode. Solid State Ionics 152– 153, 801–807 (2002)Google Scholar
  23. 23.
    Draeger: Technical documentationGoogle Scholar
  24. 24.
    Yamazoe, N.: Chemical Sensor Technology, vol. 3. Kodansha LTD. Elsevie (1991)Google Scholar
  25. 25.
    Figaro company: data sheetsGoogle Scholar
  26. 26.
    Microsens SA: Technical documentationGoogle Scholar
  27. 27.
    Yamaura, H., Tamaki, J., Moriya, K., Miura, N., Yamazoe, N.: Electrochem. Soc.  144(6) (1997)Google Scholar
  28. 28.
    Kitsukawa, S., Nakagawa, H., Fukuda, K., Asakura, S., Takahashi, S., Shigemori, T.: Sensors and Actuators B: Chemical 65, 120–121 (2000)Google Scholar
  29. 29.
    Fleischer, M., Seth, M., Kohl, C.-D., Meixner, H.: A selective H2 sensor implemented using Ga2O3 thin-films which are covered with a gas-filtering SiO2 layer. Sensors and Actuators B 36, 297–302 (1996)CrossRefGoogle Scholar
  30. 30.
    Zhang, C., Boudiba, A., Navio, C., Olivier, M.-G., Snyders, R., Debliquy, M.: Study of selectivity of NO2 sensors composed of WO3 and MnO2 thin films grown by radio frequency sputtering. Sensors & Actuators B 161, 914–922 (2012)CrossRefGoogle Scholar
  31. 31.
    Matsuura, Y., Takahuta, K., Matsuura, S.: Denki Kagaku 12, 1154 (1990)Google Scholar
  32. 32.
    Boudiba, A., Zhang, C., Bittencourt, C., Umek, P., Olivier, M.-G., Snyders, R., Debliquy, M.: Hydrothermal Synthesis of Two Dimensional WO3 Nanostructures for NO2 Detection in the ppb-level. Procedia Engineering 47, 228–231 (2012)CrossRefGoogle Scholar
  33. 33.
    Teoh, L.G., Hung, I.M., Shieh, J., Lai, W.H., Hon, M.H.: High Sensitivity Semiconductor NO2 Gas Sensor Based on Mesoporous WO3 Thin Film. Electrochemical and Solid-State Letters 6(8), G108–G111 (2003)Google Scholar
  34. 34.
    Samerjai, T., Tamaekong, N., Liewhiran, C., Wisitsoraat, A., Tuantranont, A., Phanichphant, S.: Selectivity towards H2 gas by flame-made Pt-loaded WO3 sensing films. Sensors and Actuators B 157, 290–297 (2011)CrossRefGoogle Scholar
  35. 35.
    Zhang, C., Boudiba, A., Navio, C., Olivier, M.-G., Snyders, R., Debliquy, M.: Sensing properties of Pt/Pd activated tungsten oxide films grown by simultaneous radio-frequency sputtering to reducing gases. Sensors & Actuators: B 175, 53–59 (2012)CrossRefGoogle Scholar
  36. 36.
    Schwebel, T., Fleischer, M., Meixner, H., Kohl, C.-D.: CO-Sensor for domestic use based on high temperature stable Ga2O3 thin films. Sensors and Actuators B 49, 46–51 (1998)CrossRefGoogle Scholar
  37. 37.
    Baldini, F., et al.: Sensors and Actuators B.  51, 176–180 (1998)Google Scholar
  38. 38.
    Grant, S.A., et al.: Sensors and Actuators B.  69, 132–137 (2000)Google Scholar
  39. 39.
    Mechery, S.J., Singh, J.P.: Fiber optic based gas sensor with nanoporous structure for the selective detection of NO2 in air samples. Analytica Chimica Acta 557, 123–129 (2006)CrossRefGoogle Scholar
  40. 40.
    Zhang, J., Lu, F., Huang, H., Wang, J., Yu, H., Jiang, J., Yan, D., Wang, Z.: Near infrared electrochromism of lutetium phthalocyanine. Synthetic Metals 148, 123–126 (2005)CrossRefGoogle Scholar
  41. 41.
    Bariain, C., Matias, I.R., Fernandez-Valdivielso, C., Arregui, F.J., Rodriguez-Mendez, M.L., de Saja, J.A.: Optical fiber sensor based on lutetium bisphthalocyanine for the detection of gases using standardtelecommunication wavelengths. Sensors and Actuators B 93, 153–158 (2003)CrossRefGoogle Scholar
  42. 42.
    Debliquy, M., Lahem, D., Bueno, A., Caucheteur, C., Bouvet, M., Olivier, M.-G.: Nitrogen dioxide sensor based on optical fiber coated with a porous silica matrix incorporating lutetium bisphthalocyanine. In: Proc. ICST 2013, pp. 659–663 (2013)Google Scholar
  43. 43.
    Briers, E.: Sensibilité et performances des détecteurs de fumée. Association Nationale pour la Protection contre l’Incendie et l’Intrusion (1989)Google Scholar
  44. 44.
    Aralt, T.T., Nilsen, A.R.: Automatic fire detection in road traffic tunnels. Tunnelling and Underground Space Technology 24, 75–83 (2009)CrossRefGoogle Scholar
  45. 45.
    NFPA 72 – National Fire Alarm and Signaling Code – 2010 Edition. National Fire Alarm Association (2010) Google Scholar
  46. 46.
    Chen, S.-J., Hovde, D.C., Peterson, K.A., Marshall, A.W.: Fire detection using smoke and gas sensors. Fire Safety Journal 42, 507–515 (2007)CrossRefGoogle Scholar
  47. 47.
    Middletown, J.F.: Developments in Flame Detectors. Fire Safety Journal 6, 175–182 (1983)CrossRefGoogle Scholar
  48. 48.
    Han, D., Lee, B.: Flame and smoke detection method for early real-time detection of a tunnel fire. Fire Safety Journal 44, 951–996 (2009)CrossRefGoogle Scholar
  49. 49.
    Verstockt, S., Van Hoecke, S., Beji, T., Merci, B., Gouverneur, B., Enis Cetin, A., De Potter, P., Van de Walle, R.: A multi-modal video analysis approach for car park fire detection. Fire Safety Journal 57, 44–57 (2013)CrossRefGoogle Scholar
  50. 50.
    Lönnermark, A., Hedekvist, P.O., Ingason, H.: Gas temperature measurements using fibre Bragg grating during fire experiments in a tunnel. Fire Safety Journal 43, 119–126 (2008)CrossRefGoogle Scholar
  51. 51.
    Bolognini, G., Hartog, A.: Raman-based fibre sensors: Trends and applications. Optical Fiber Technology 19(6), Part B, 678–688 (2013)Google Scholar
  52. 52.
    Ishii, H., Kawamura, K., Ono, T., Megumi, H., Kikkawa, A.: A fire detection system using optical fibres for utility tunnels. Fire Safety Journal 29, 87–98 (1997)CrossRefGoogle Scholar
  53. 53.
  54. 54.
    Renoirt, J.-M., Caucheteur, C., Olivier, M., Mégret, P., Debliquy, M.: Infrared Radiation detection using fibre Bragg grating. In: Morozhenko, V. (ed.) Infrared Radiation. InTECH Book (2012) ISBN 978-953-51-0060-7Google Scholar
  55. 55.
    Caucheteur, C., Renoirt, J.-M., Debliquy, M., Mégret, P.: Infrared radiation detection with matched fiber Bragg gratings. IEEE Photonics Technology Letters 22, 1732–1734 (2010)CrossRefGoogle Scholar
  56. 56.
    Yüksel, K., Caucheteur, C., Renoirt, J.-M., Debliquy, M., Mégret, P., Wuilpart, M.: Infrared radiation detector interrogated by optical frequency-domain reflectometer. Optics and Lasers in Engineering 50, 308–311 (2012)CrossRefGoogle Scholar
  57. 57.
    Tai, H., Tanaka, H., Yoshino, T.: Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392 μm line of a He-Ne laser. Optics Letters 12, 437–439 (1987)CrossRefGoogle Scholar
  58. 58.
    Hennig, O., Strzoda, R., Magori, E., Chemisky, E., Tump, C., Fleischer, M., Meixner, H., Eisele, I.: Hand-held unit for simultaneous detection of methane and ethane based on NIR-absorption spectroscopy. Sensors and Actuators B 95, 151–156 (2003)CrossRefGoogle Scholar
  59. 59.
    Cubillas, A.M., Silva-Lopez, M., Lazaro, J.M., Conde, O.M., Petrovich, M.N., Lopez-Higuera, J.M.: Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm. Optics Express 15, 1570–1576 (2007)CrossRefGoogle Scholar
  60. 60.
    Benounis, M., Jaffrezic-Renault, N., Dutasta, J.P., Cherif, K., Abdelghani, A.: Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules. Sensors and Actuators B 107, 32–39 (2005)CrossRefGoogle Scholar
  61. 61.
    Yang, J., Tao, C., Li, X., Zhu, G., Chen, W.: Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorportating cryptophane A for methane detection. Optics Express 19, 14696–14706 (2011)CrossRefGoogle Scholar
  62. 62.
    Alder-Golden, M.S., Goldstein, N., Bien, F., Matthew, M.W., Gersh, M.E., Cheng, W.K., Adams, F.W.: Laser Raman sensor for measurement of trace-hydrogen gas. Applied Optics 31, 831–835 (1992)CrossRefGoogle Scholar
  63. 63.
    Lewis, F.A.: The Palladium Hydrogen system. Academic Press, London (1967)Google Scholar
  64. 64.
    Butler, M.A.: Optical fiber hydrogen sensor. Applied Physics Letters 45, 1007–1008 (1984)CrossRefGoogle Scholar
  65. 65.
    Trouillet, A., Marin, E., Veillas, C.: Fibre gratings for hydrogen sensing. Measurement Science and Technology 17, 1124–1128 (2006)CrossRefGoogle Scholar
  66. 66.
    Buric, M., Chen, K.P., Bhattarai, M., Swinehart, P.R., Maklad, M.: Active fiber Bragg grating hydrogen sensors for all-temperature operation. IEEE Photonics Technology Letters 19, 255–257 (2007)CrossRefGoogle Scholar
  67. 67.
    Villatoro, J., Monzon-Hernandez, D.: Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers. Optics Express 13, 5087–5092 (2005)CrossRefGoogle Scholar
  68. 68.
    Caucheteur, C., Debliquy, M., Lahem, D., Mégret, P.: Catalytic fiber Bragg grating sensor for hydrogen leak detection in air. IEEE Photonics Technology Letters 20, 96–98 (2008)CrossRefGoogle Scholar
  69. 69.
    Caucheteur, C., Debliquy, M., Lahem, D., Mégret, P.: Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air. Optics Express 13, 16854–16859 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • M. Debliquy
    • 1
    Email author
  • D. Lahem
    • 2
  • A. Bueno-Martinez
    • 3
  • G. Ravet
    • 3
  • J. -M. Renoirt
    • 1
    • 3
  • C. Caucheteur
    • 3
  1. 1.Service de Science des Matériaux, Faculté PolytechniqueUniversité de MonsMonsBelgium
  2. 2.Materia NovaMaterials R&D CentreMonsBelgium
  3. 3.Service d’Electromagnétisme et de Télécommunications, Faculté PolytechniqueUniversité de MonsMonsBelgium

Personalised recommendations