Skip to main content

Application of Extremophilic Microorganisms in Decolorization and Biodegradation of Textile Wastewater

  • Chapter
  • First Online:
Microbial Degradation of Synthetic Dyes in Wastewaters

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

The release of colored wastewater from textile industries in the ecosystem has been a great environmental as well as public health concern over the decades. Textile industry is a promising market due to the customer’s increasing demand for new products. To fulfill these demands, textile industries are using selective dyestuffs among 100,000 different commercially available dyes (Husain in Crit Rev Biotechnol 26:201–221, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aislabie JM, Broady PA, Saul DJ (2006) Culturable aerobic heterotrophic bacteria from high altitude, high latitude soil of La Gorce Mountains (86 30’S, 147 W), Antarctica. Antarctic Sci 18:313–321

    Google Scholar 

  • Al-Kdasi A, Idris A, Saed K, Guan CT (2004) Treatment of textile wastewater by advanced oxidation processes a review. Global Nest Int J 6:222–230

    Google Scholar 

  • Amoozegar MA, Hajighasemi M, Hamedi J, Asad S, Ventosa A (2011) Azo dye decolorization by halophilic and halotolerant microorganisms. Ann Microbiol 61:217–230

    Google Scholar 

  • Amoozegar MA, Ghazanfari N, Didari M (2012) Lead and cadmium bioremoval by Halomonas sp., an exopolysaccharide-producing halophilic bacterium. P Bio Sci 2:1–11

    Google Scholar 

  • An SY, Min SK, Cha IH, Choi YoL, Cho YS, Kim CH, Lee YC (2002) Decolorization of triphenylmethane and azo dyes by Citrobacter sp. Biotechnol Lett 24:1037-1040

    Google Scholar 

  • Anjaneya O, Souche SY, Santoshkumar M, Karegoudar TB (2011) Decolorization of sulfonated azo dye metanil yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2. J Hazard Mater 190:351–358

    Google Scholar 

  • Antunes A, Ngugi DK, Stingl U (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Reports 3:416–433

    Google Scholar 

  • Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SMM (2007) Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol 98:2082–2088

    Google Scholar 

  • Ayed L, Chaieb K, Cheref A, Bakhrouf A (2009) Biodegradation of triphenylmethane dye malachite green by Sphingomonas paucimobilis. World J Microbiol Biotechnol 25:705–711

    Google Scholar 

  • Bafana A, Chakrabarti T, Muthal P, Kanade G (2009) Detoxification of benzidine-based azo dye by E. gallinarum: Time-course study. Ecotoxic Environ Safe 72:960–964

    Google Scholar 

  • Banat IM, Nigam P, McMullan G, Marchant R, Singh D (1997) The isolation of thermophilic bacterial cultures capable of textile dyes decolorization. Environ Int 23:547–551

    Google Scholar 

  • Barbara N, Gianluca A, Annarita P (2012) Bacterial polymers produced by extremophiles: Biosynthesis, characterization, and applications of exopolysaccharides, in extremophiles: In: Singh OV (ed), Sustainable resources and biotechnological implications. Wiley, Hoboken. doi:10.1002/9781118394144.ch13

  • Bay HH, Lim CK, Kee TC, Ware I, Chan GF, Shahir S, Ibrahim Z (2014) Decolorization of acid orange 7 recalcitrant auto-oxidation colored by-products using an acclimatised mixed bacterial culture. Environ Sci Pollut Res Int 21:3891–3906

    Google Scholar 

  • Bhatt N, Patel KC, Keharia H, Madamwar D (2005) Decolorization of diazo-dye reactive blue 172 by Pseudomonas aeruginosa NBAR12. J Basic Microbiol 45:407–418

    Google Scholar 

  • Bragger JL, Lloyd AW, Soozandehfar SH, Bloomfield SF, Marriott C, Martin GP (1997) Investigations into the azo reducing activity of a common colonic microorganism. Int J Pharm 157:61–71

    Google Scholar 

  • Brock TD (1967) Life at high temperatures. Science 158:1012–1019

    Google Scholar 

  • Cao DM, Xiao X, Wu YM, Ma XB, Wang MN, Wu YY, Du DL (2013) Role of electricity production in the anaerobic decolorization of dye mixture by exoelectrogenic bacterium Shewanella oneidensis MR-1. Bioresour Technol 136:176–181

    Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Omar SM, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460

    Google Scholar 

  • Chang JS, Lin YC (2000) Fed-batch bioreactor strategies for microbial decolorization of azo dye using a Pseudomonas luteola strain. Biotechnol Progr 16:979–985

    Google Scholar 

  • Chen KC, Huang WT, Wu JY, Houng JY (1999) Microbial decolorization of azo dyes by Proteus mirabilis. J Ind Microbiol Biotechnol 23:686–690

    Google Scholar 

  • Chen KC, Wu JY, Liou DJ, Hwang SCJ (2003) Decolorization of the textile dyes by newly isolated bacterial strains. J Biotechnol 101:57–68

    Google Scholar 

  • Chen BY, Lin KW, Wang YM, Yen CY (2009a) Revealing interactive toxicity of aromatic amines to azo dye decolorizer Aeromonas hydrophila. J Hazard Mater 166:187–194

    Google Scholar 

  • Chen H, Xu H, Heinze TM, Cerniglia CE (2009b) Decolorization of water and oil-soluble azo dyes by Lactobacillus acidophilus and Lactobacillus fermentum. J Ind Microbiol Biotechnol 36:1459–1466

    Google Scholar 

  • Chen BY, Hsueh CC, Chen WM, Li WD (2011) Exploring decolorization and halotolerance characteristics by indigenous acclimatized bacteria: Chemical structure of azo dyes and dose-response assessment. J Taiwan Inst Chem Eng 42:816–825

    Google Scholar 

  • Christie R (2007) Environmental aspects of textile dyeing. Elsevier, London

    Google Scholar 

  • D’Auria S, DiCesare N, Staiano M, Gryczynski Z, Rossi M, Lakowicz JR (2002) A novel fluorescence competitive assay for glucose determinations by using a thermostable glucokinase from the thermophilic microorganism Bacillus stearothermophilus. Anal Biochem 303:138–144

    Google Scholar 

  • Dawkar VV, Jadhav UU, Ghodake GS, Govindwar SP (2009) Effect of inducers on the decolorization and biodegradation of textile azo dye navy blue 2GL by Bacillus sp. VUS. Biodegradation 20:777–787

    Google Scholar 

  • Deive FJ, Domínguez A, Barrio T, Moscoso F, Morán P, Longo MA, Sanromán MA (2010) Decolorization of dye reactive black 5 by newly isolated thermophilic microorganisms from geothermal sites in Galicia (Spain). J Hazard Mater 182:735–742

    Google Scholar 

  • Demirci A, Mutlu MB, Güven A, Korcan E, Güven K (2011) Decolorization of textile azo-metal complex dyes by a halophilic bacterium isolated from Çamaltı Saltern in Turkey. CLEAN Soil Air Water 39:177–184

    Google Scholar 

  • Demirjian DC, Morı́s-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151

    Google Scholar 

  • Dhanve RS, Shedbalkar UU, Jadhav JP (2008) Biodegradation of diazo reactive dye Navy Blue HE2R (Reactive Blue 172) by an isolated Exiguobacterium sp. RD3. Biotechnol Bioprocess Eng 13:53–60

    Google Scholar 

  • Diorio LA, Mercuri AA, Nahabedian DE, Forchiassin F (2008) Development of a bioreactor system for the decolorization of dyes by Coriolus versicolor f. antarcticus. Chemosphere 72:150–156

    Google Scholar 

  • Domínguez A, Couto SR, Sanromán MÁ (2005) Dye decolorization by Trametes hirsuta immobilized into alginate beads. World J Microb Biot 21:405–409

    Google Scholar 

  • Dos Santos AB, Traverse J, Cervantes FJ, Van Lier B (2005) Enhancing the electron transfer capacity and subsequent color removal in bioreactors by applying thermophilic anaerobic treatment and redox mediators. Biotechnol Bioengineer 89:42–52

    Google Scholar 

  • Dos Santos AB, Cervantes FJ, van Lier JB (2007) Review paper on current technologies for decolorization of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385

    Google Scholar 

  • Du LN, Zhao M, Li G, Xu FC, Chen WH, Zhao YH (2013) Biodegradation of malachite green by Micrococcus sp. strain BD15: biodegradation pathway and enzyme analysis. Int Biodeter Biodegr 78:108–116

    Google Scholar 

  • Egorova K, Antranikian G (2005) Industrial relevance of thermophilic Archaea. Curr Opin Microbiol 8:649–655

    Google Scholar 

  • Enayatzamir K, Alikhani HA, Rodríguez Couto S (2008) Simultaneous production of laccase and decoloration of the diazo dye reactive black 5 in a fixed-bed bioreactor. J Hazard Mater 164:296–300

    Google Scholar 

  • Evangelista-Barreto NS, Albuquerque CD, Vieira RHSF, Campos-Takaki GM (2009) Cometabolic decolorization of the reactive azo dye orange II by Geobacillus stearothermophilus UCP 986. Text Res J 79:1266–1273

    Google Scholar 

  • Feng T-C, Cui C-Z, Dong F, Feng Y-Y, Liu Y-D, Yang, X-M (2012) Phenanthrene biodegradation by halophilic Martelella sp. AD‐3. J Appl Microbiol 113:779–789

    Google Scholar 

  • Francis AJ, Dodge CJ, Gillow JB, Papenguth HW (2000) Biotransformation of uranium compounds in high ionic strength brine by a halophilic bacterium under denitrifying conditions. Environ Sci Technol 34:2311–2317

    Google Scholar 

  • Gao D, Zeng Y, Wen X, Qian Y (2008) Competition strategies for the incubation of white rot fungi under non-sterile conditions. Process Biochem 43:937–944

    Google Scholar 

  • Ge Y, Yan L, Qinge K (2004) Effect of environment factors on dye decolorization by Phanerochaete sordid ATCC90872 in an aerated reactor. Process Biochem 39:1401–1405

    Google Scholar 

  • Ghodake GS, Talke AA, Jadhav JP, Govindwar SP (2009) Potential of Brassica junicea in order to treat textile-effluent-contaminated sites. Int J Phytoremediat 11:297–312

    Google Scholar 

  • Gomare SS, Tamboli DP, Kagalkar AN, Govindwar SP (2009) Eco-friendly biodegradation of a reactive textile dye golden yellow HER by Brevibacillus laterosporus MTCC 2298. Int Biodeter Biodegr 63:582–586

    Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotech 42:223–235

    Google Scholar 

  • Gopinath KP, Murugesan S, Abraham J, Muthukumar K (2009) Bacillus sp. mutant for improved biodegradation of Congo red: random mutagenesis approach. Bioresour Technol 100:6295–6300

    Google Scholar 

  • Grant WD, Tindall BJ (1986) The alkaline saline environment. Microbes in extreme environments. Academic, London, pp 25–54

    Google Scholar 

  • Guo J, Zhou J, Wang D, Tian C, Wang P, Uddin MS (2008a) A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation 19:15–19

    Google Scholar 

  • Gursahani YH, Gupta SG (2011) Decolorization of textile effluent by a thermophilic bacteria Anoxybacillus rupiensis. J Petrol Environ Biotech 2:111

    Google Scholar 

  • Haseltine C, Hill T, Montalvo-Rodriguez R, Kemper SK, Shand RF, Blum P (2001) Secreted euryarchaeal microhalocins kill hyperthermophilic crenoarchaea. Bacteriol 183:287–291

    Google Scholar 

  • Horikoshi K (2011) Extremophiles handbook, vol 1. Springer, Tokyo

    Google Scholar 

  • Hsueh CC, Chen BY, Yen CY (2009) Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila. J Hazard Mater 167:995–1001

    Google Scholar 

  • Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26:201–221

    Google Scholar 

  • Idaka E, Ogawa T, Horitsu H, Tomoyeda M (1978) Degradation of azo compounds by Aeromonas hydrophila var. 24B. J Soc Dyers Colourists 94:91–94

    Google Scholar 

  • Jadhav UU, Dawkar VV, Ghodake GS, Govindwar SP (2008) Biodegradation of direct red 5B, a textile dye by newly isolated Comamonas sp. UVS. J Hazard Mater 158:507–516

    Google Scholar 

  • Jadhav UU, Dawkar VV, Kagalkar AN, Govindwar SP (2011) Effect of metals on decolorization of reactive blue HERD by Comamonas sp. UVS. Water Air Soil Pollut 216:621–631

    Google Scholar 

  • Jin R, Yang H, Zhang A, Wang J, Liu G (2009) Bioaugmentation on decolorization of CI direct blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR). J Hazard Mater 163:1123–1128

    Google Scholar 

  • Joe M-H, Lim S-Y, Kim D-H, Lee I-S (2008) Decolorization of reactive dyes by Clostridium bifermentans SL186 isolated from contaminated soil. World J Microb Biotechnol 24:2221–2226

    Google Scholar 

  • Jones EB, Grant WD, Collins NC, Mwatha WE (1994) Alkaliphiles: diversity and identification. In: Priest FG et al (eds) Bacterial diversity and systematics. Plenum Press, New York, pp 195–230

    Google Scholar 

  • Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2008) Ecofriendly biodegradation and detoxification of reactive red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163:735–742

    Google Scholar 

  • Kalyani DC, Telke AA, Govindwar SP, Jadhav JP (2009) Biodegradation and detoxification of reactive textile dye by isolated Pseudomonas sp. SUK1. Water Environ Res 81:298–307

    Google Scholar 

  • Kamida HM, Durrant LR, Monteiro RTR, de Armas ED (2005) Biodegradação de efluente têxtil por Pleurotus sajor-caju. Quim Nova 28:629–632

    Google Scholar 

  • Kandelbauer A, Guebitz GM (2005) Bioremediation for the decolorization of textile dyes: a review. Environmental Chemistry. Springer. Berlin, pp 269–288

    Google Scholar 

  • Kannappan P G, Hajamohideen A M S, Karuppan M, Manickam V (2009) Improved biodegradation of congo red by using Bacillus sp. Bioresour Technol 100-670

    Google Scholar 

  • Kapdan IK, Kargia F, McMullan G, Marchant R (2000) Effect of environmental conditions on biological decolorization of textile dyestuff by C. versicolor. Enzyme Microb Tech 26:381–387

    Google Scholar 

  • Kasinath A, Novotný Č, Svobodová K, Patel KC, Šašek V (2003) Decolorization of synthetic dyes by Irpex lacteus in liquid cultures and packed-bed bioreactor. Enzyme Microb Tech 32:167–173

    Google Scholar 

  • Keller M, Braun FJ, Dirmeier R, Hafenbradl D, Burggraf S, Rachel R, Stetter KO (1995) Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol 164:390–395

    Google Scholar 

  • Khalid A, Arshad M, Crowley DE (2008a) Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains. Appl Microbiol Biot 78:361–369

    Google Scholar 

  • Khalid A, Arshad M, Crowley DE (2008b) Decolorization of azo dyes by Shewanella sp. under saline conditions. Appl Microbiol Biot 79:1053–1059

    Google Scholar 

  • Khalid A, Kausar F, Arshad M, Mahmood T, Ahmed I (2012) Accelerated decolorization of reactive azo dyes under saline conditions by bacteria isolated from Arabian seawater sediment. Appl Microbiol Biotechnol 96:1599–1606

    Google Scholar 

  • Kolekar YM, Pawar SP, Gawai KR, Lokhande PD, Shouche YS, Kodam KM (2000) Decolorization and degradation of disperse blue 79 and acid orange 10, by Bacillus fusiformis KMK5 isolated from the textile dye contaminated soil. Bioresour Technol 99:8999–9003

    Google Scholar 

  • Kublanov IV, Perevalova AA, Slobodkina GB, Lebedinsky AV, Bidzhieva SK, Kolganova TV, Bonch-Osmolovskaya EA (2009) Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia). Appl Environ Microb 75:286–291

    Google Scholar 

  • Kulla HG, Klausener F, Meyer U, Lüdeke B, Leisinger T (1983) Interference of aromatic sulfo groups in the microbial degradation of the azo dyes orange I and orange II. Arch Microbiol 135:1–7

    Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1:1079–1093

    Google Scholar 

  • Kumar BM, Kumar PUA, Unnamatla V (2013) Studies on biodegradation of “congo red” using Saccharomyces cerevisiae and Lactobacillus sporogenes. Asian J Microbiol Biotechnol Environ Sci 15:743–748

    Google Scholar 

  • Kunjadia PD, Patel FD, Nagee A, Mukhopadhyaya PN, Dave GS (2012) Crystal violet (triphenylmethane dye) decolorization potential of Pleurotus ostreatus (MTCC142). BioRes 7:1189–1199

    Google Scholar 

  • Kushner DJ, Kamekura M (1988) Physiology of halophilic eubacteria. Halophilic Bact 1:109–140

    Google Scholar 

  • Lamers PP, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2008) Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnol 26:631–638

    Google Scholar 

  • Leidig E, Prüsse U, Vorlop KD, Winter J (1999) Biotransformation of Poly R-478 by continuous cultures of PVAL-encapsulated Trametes versicolor under non-sterile conditions. Bioprocess Eng 21:5–12

    Google Scholar 

  • León R, Martı́n M, Vigara J, Vilchez C, Vega JM (2003) Microalgae mediated photo production of β-carotene in aqueous–organic two phase systems. Biomol Eng 20:177–182

    Google Scholar 

  • Li X, Jia R (2008) Decolorization and biosorption for Congo red by system rice hull- Schizophyllum sp. F17 under solid-state condition in a continuous flow packed-bed bioreactor. Bioresour Technol 99:6885–6892

    Google Scholar 

  • Liebgott PP, Labat M, Casalot L, Amouric A, Lorquin J (2007) Bioconversion of tyrosol into hydroxytyrosol and 3, 4-dihydroxyphenylacetic acid under hypersaline conditions by the new Halomonas sp. strain HTB24. FEMS Microbiol Lett 276:26–33

    Google Scholar 

  • Lin J, Zhang X, Li Z, Lei L (2010) Biodegradation of Reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate. Bioresour Technol 101:34–40

    Google Scholar 

  • Liu G, Zhou J, Wang J, Song Z, Qv Y (2006) Bacterial decolorization of azo dyes by Rhodopseudomonas palustris. World J Microb Biot 22:1069–1074

    Google Scholar 

  • Liu G, Zhou J, Meng X, Fu SQ, Wang J, Jin R, Lv H (2013) Decolorization of azo dyes by marine Shewanella strains under saline conditions. Appl Microbiol Biotechnol 97:4187–4197

    Google Scholar 

  • Lu J, Tappel RC, Nomura CT (2009) Mini-review: biosynthesis of poly (hydroxyalkanoates). J Macromol Sci Part C: Polymer Rev 49:226–248

    Google Scholar 

  • Lv GY, Cheng JH, Chen XY, Zhang ZF, Fan LF (2013) Biological decolorization of malachite green by Deinococcus radiodurans R1. Bioresour Technol 144:275–280

    Google Scholar 

  • Maier J, Kandelbauer A, Erlacher A, Cavaco-Paulo A, Gübitz GM (2004) A new alkali-thermostable azoreductase from Bacillus sp. strain SF. Appl Environ Microb 70:837–844

    Google Scholar 

  • Marteinsson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr UB, Prieur D (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49:351–359

    Google Scholar 

  • Mazmanci MA, Ünyayar A (2005) Decolorization of reactive black 5 by Funalia trogii immobilised on Luffa cylindrical sponge. Process Biochem 40:337–342

    Google Scholar 

  • McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat I, Marchant R, Smyth W (2001) Microbial decolorization and degradation of textile dyes. Appl Microbiol Biot 56:81–87

    Google Scholar 

  • Meehan C, Bjourson AJ, McMullan G (2001) Paenibacillus azoreducens sp. nov., a synthetic azo dye decolorizing bacterium from industrial wastewater. Int J Syst Evol Microbiol 51:1681–1685

    Google Scholar 

  • Meng X, Liu G, Zhou J, Shiang FuQ, Wang G (2012) Azo dye decolorization by Shewanella aquimarina under saline conditions. Bioresour Technol 114:95–101

    Google Scholar 

  • Misal SA, Lingojwar DP, Shinde RM, Gawai KR (2011) Purification and characterization of azoreductase from alkaliphilic strain Bacillus badius. Process Biochem 46:1264–1269

    Google Scholar 

  • Modi HA, Rajput G, Ambasana C (2010) Decolorization of water soluble azo dyes by bacterial cultures, isolated from dye house effluent. Bioresour Technol 101:6580–6583

    Google Scholar 

  • Mohorčič M, Friedrich J, Pavko A (2004) Decolorization of the diazo dye reactive black 5 BY. Acta Chim Slov 51:619–628

    Google Scholar 

  • Nicholson CA, Fathepure BZ (2004) Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microb 70:1222–1225

    Google Scholar 

  • Nicholson CA, Fathepure BZ (2005) Aerobic biodegradation of benzene and toluene under hypersaline conditions at the Great Salt Plains, Oklahoma. FEMS Microbiol Lett 245:257–262

    Google Scholar 

  • Nicolaus B, Kambourova M, Oner ET (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31:1145–1158

    Google Scholar 

  • O’Connor EM, Shand RF (2002) Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. J Ind Microbiol Biotechnol 28:23–31

    Google Scholar 

  • Oesterhelt D, Stoeckenius W (1973) Functions of a new photoreceptor membrane. Proc Natl Acad Sci 70:2853–2857

    Google Scholar 

  • Ogawa T, Yatome C, Idaka E, Kamiya H (1986) Biodegradation of azo acid dyes by continuous cultivation of Pseudomonas cepacia 13NA. J Soc Dyestuff Colourists 102:12–14

    Google Scholar 

  • Ogugbue CJ, Sawidis T, Oranusi NA (2011) Evaluation of color removal in synthetic saline wastewater containing azo dyes using an immobilized halotolerant cell system. Ecol Eng 37:2056–2060

    Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biot 28:56–63

    Google Scholar 

  • Oren A (2011) Diversity of halophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 309–325

    Google Scholar 

  • Ozdemir G, Pazarbasi B, Kocyigit A, Omeroglu EE, Yasa I, Karaboz I (2008) Decolorization of acid black 210 by Vibrio harveyi TEMS1, a newly isolated bioluminescent bacterium from Izmir Bay, Turkey. World J Microb Biot 24:1375–1381

    Google Scholar 

  • Paar A, Costa S, TzanovT, Gudelj M, Robra KH, Cavaco-Paulo A, Gübitz GM (2001) Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents. J Biotechnol 89:147–153

    Google Scholar 

  • Papinutti L, Mouso N, Forchiassin F (2006) Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran—Fomes sclerodermeus. Enzyme Microb Technol 39(4):848–853

    Google Scholar 

  • Park C, Lee B, Han EJ, Lee J, Kim S (2006) Decolorization of acid black 52 by fungal immobilization. Enzyme Microb Technol 39:371–374

    Google Scholar 

  • Pazarlioglu NK, Urek RO, Ergun F (2005) Biodecolorization of direct blue 15 by immobilized Phanerochaete chrysosporium. Process Biochem 40:1923–1929

    Google Scholar 

  • Podar M, Reysenbach A-L (2006) New opportunities revealed by biotechnological explorations of extremophiles. Curr Opin Biotech 17:250–255

    Google Scholar 

  • Popescu G, Dumitru L (2009) Biosorption of some heavy metals from media with high salt concentrations by halophilic archaea. Biotechnol Biotech Equ 23:791–795

    Google Scholar 

  • Pourbabaee AA, Bostani S, Amoozegar MA, Naddaf R (2011) Decolorization of cibacron black w-55 under alkaline conditions by new strain of Halomonas sp. isolated from textile effluent. Iranian J Chem Chem Eng 30:63–70

    Google Scholar 

  • Prasad ASA, Rao KVB (2013) Aerobic biodegradation of azo dye by Bacillus cohnii MTCC 3616; an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems. Appl Microbiol Biot 97:7469–7481

    Google Scholar 

  • Prasad SS, Aikat K (2014) Study of bio-degradation and bio-decolorization of azo dye by Enterobacter sp. SXCR. Environ Technol 35:956–965

    Google Scholar 

  • Preethi G, Arulmozhi U, Gurukarthikeyan S, Chandra H, Sridhar S (2014) Optimization and canonical analysis of microbial consortium mediated bio-decolorization of navy blue her. Int J Appl Eng Res 9:87–92

    Google Scholar 

  • Prieur D (2007) An extreme environment on earth: deep-sea hydrothermal vents lessons for exploration of Mars and Europa. In: Grgaud M et al (eds) Lectures in astrobiology, advances in astrobiology and biogeophysics, vol 2, pp 319–345

    Google Scholar 

  • Radha KV, Regupathi I, Arunagiri A, Murugesan T (2005) Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics. Process Biochem 40:3337–3345

    Google Scholar 

  • Ramsay JA, Goode C (2004) Decoloration of a carpet dye effluent using Trametes versicolor. Biotechnol Lett 26:197–201

    Google Scholar 

  • Reysenbach AL, Liu Y, Banta AB, Beveridge TJ, Kirshtein JD, Schouten S, Voytek MA (2006) A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442:444–447

    Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Google Scholar 

  • Rodríguez Couto S (2009) Dye removal by immobilised fungi. Biotechnol Adv 27:227–235

    Google Scholar 

  • Rodríguez Couto S, Sanromán MA (2004) Continuous decolorization of a leather azo dye by Trametes hirsuta. Afinidad 61:460–463

    Google Scholar 

  • Rodríguez Couto S, Sanromán MA (2005) Coconut flesh: a novel raw material for laccase production by Trametes hirsute under solid-state conditions: application to lissamine green B decolorization. J Food Eng 71:208–213

    Google Scholar 

  • Rodríguez Couto S, Rivela I, Munoz MR, Sanromán A (2000) Ligninolytic enzyme production and the ability of decolorization of Poly R-478 in packed-bed bioreactors by Phanerochaete chrysosporium. Bioprocess Engineer 23:287–293

    Google Scholar 

  • Rodríguez Couto S, Moldes D, Liébanas A, Sanromán A (2003) Investigation of several bioreactor configurations for laccase production by Trametes versicolor operating in solid-state conditions. Biochem Eng J 15:21–26

    Google Scholar 

  • Rodríguez Couto S, Sanromán MA, Hofer D, Gübitz GM (2004a) Production of laccase by Trametes hirsuta grown in an immersion bioreactor and its application in the docolorization of dyes from a leather factory. Engineer Life Sci 4:233–238

    Google Scholar 

  • Rodríguez Couto S, Sanromán Ma A, Hofer D, Gübitz GM (2004b) Stainless steel sponge: a novel carrier for the immobilization of the white-rot fungus Trametes hirsuta for decolorization of textile dyes. Bioresour Technol 95:67-72

    Google Scholar 

  • Rodríguez Couto S, Rosales E, Sanromán MA (2006) Decolorization of synthetic dyes by Trametes hirsute in expanded-bed reactors. Chemosphere 62:1558–1563

    Google Scholar 

  • Rodríguez Couto S, Osma JF, Toca Herrera JL (2008) Effective-cost production of laccase:reutilisation of a natural adsorbent. 4th European Meeting on Oxizymes, Helsinki (Finland), Junio, pp 16-18

    Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Google Scholar 

  • Russ R, Rau J, Stolz A (2000) The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl Environ Microbiol 66:1429–1434

    Google Scholar 

  • Salah Uddin MS, Zhou J, Qu Y, Guo J, Wang P, Hong Zhao L (2007) Biodecolorization of azo dye acid red B under high salinity condition. B. Environ. Contam Tox 79:440–444

    Google Scholar 

  • Sanromán MA, Deive FJ, Dominguez A, Barrio T, Longo MA (2010) Dye decolonization by newly isolated thermophilic microorganisms. Chem Eng 20:151–156

    Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2009) Ecofriendly degradation of sulfonated diazo dye CI reactive green 19A using Micrococcus glutamicus NCIM-2168. Bioresour Technol 100:3897–3905

    Google Scholar 

  • Sarayu K, Sandhya S (2010) Aerobic biodegradation pathway for remazol orange by Pseudomonas aeruginosa. Appl Biochem Biotech 160:1241–1253

    Google Scholar 

  • Schiraldi C, De Rosa M (2002) The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol 20:515–521

    Google Scholar 

  • Schliephake K, Lonergan GT (1996) Laccase variation during dye decolorization in a 200 L packed-bed bioreactor. Biotechnol Lett 18:881–886

    Google Scholar 

  • Shin M, Nguyen T, Ramsay J (2002) Evaluation of support materials for the surface immobilization and decoloration of amaranth by Trametes versicolor. Appl Microbiol Biotechnol 60:218–223

    Google Scholar 

  • Singh AK, Prakash D, Shahi SK (2013) Decolorization of the textile dye (Brown GR) by isolated Aspergillus strain from Meerut region. Int Res J Environ Sci 2:25–29

    Google Scholar 

  • Song S, Yao J, He Z, Qiu J, Chen J (2008) Effect of operational parameters on the decolorization of CI reactive blue 19 in aqueous solution by ozone-enhanced electrocoagulation. J Hazard Mater 152:204–210

    Google Scholar 

  • Stock A, Breiner HW, Pachiadaki M, Edgcomb V, Filker S, La Cono V, Yakimov MM, Stoeck T (2012) Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 16:21–34

    Google Scholar 

  • Stuart ES, Morshed F, Sremac M, DasSarma S (2001) Antigen presentation using novel particulate organelles from halophilic archaea. J Biotechnol 88:119–128

    Google Scholar 

  • Stuart ES, Morshed F, Sremac M, DasSarma S (2004) Cassette-based presentation of SIV epitopes with recombinant gas vesicles from halophilic archaea. J Biotechnol 114:225–237

    Google Scholar 

  • Šušla M, Novotný Č, Svobodová K (2007) The implication of Dichomitus squalens laccase isoenzymes in dye decolorization by immobilized fungal cultures. Bioresour Technol 98:2109–2115

    Google Scholar 

  • Tan L, Qu Y, Zhou J, Li A, Gou M (2009) Identification and characteristics of a novel salt-tolerant Exiguobacterium sp. for azo dyes decolorization. Appl Biochem Biotech 159:728–738

    Google Scholar 

  • Tavčar M, Svobodová K, Kuplenk J, Novotný Č, Pavko A (2006) Biodegradation of azo dye RO16 in different reactors by immobilized Irpex lacteus. Acta Chim Slov 53:338–343

    Google Scholar 

  • Taylor MP, van Zyl L, Tuffin M, Cowan D (2012) Extremophiles and biotechnology: how far have we come? Extremophiles: Microbiol Biotechnol 1

    Google Scholar 

  • Telke A, Kalyani D, Jadhav J, Govindwar S (2008) Kinetics and mechanism of reactive red 141 degradation by a bacterial isolate Rhizobium radiobacter MTCC 8161. Acta Chim Slov 55:320–329

    Google Scholar 

  • Telke A, Kalyani DC, Dawkar VV, Govindwar SP (2009) Influence of organic and inorganic compounds on oxidoreductive decolorization of sulfonated azo dye CI Reactive Orange 16. J Hazard Mater 172:298–309

    Google Scholar 

  • Tindall BJ, Ross HNM, Grant WD (1984) Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria. Syst Appl Microbiol 5:41–57

    Google Scholar 

  • Torkamani S, Shayegan J, Yaghmaei S, Alemzadeh I (2008) Study of a newly isolated thermophilic bacterium capable of Kuhemond heavy crude oil and dibenzothiophene biodesulfurization following 4S pathway at 60 °C. J Chem Technol Biotechnol 83:1689–1693

    Google Scholar 

  • Trivedi S, Prakash Choudhary O, Gharu J (2011) Different proposed applications of bacteriorhodopsin. Recent Pat DNA Gene Seq 5:35–40

    Google Scholar 

  • Tychanowicz GK, Zilly A, de Souza CGM, Peralta RM (2004) Decolorization of industrial dyes by solid-state cultures of Pleurotus pulmonarius. Process Biochem 39:855–859

    Google Scholar 

  • Umesh U, Jadhav VV, Dawkar Ghodake GS, Govindwar SP (2008) Biodegradation of direct red 5B, a textile dye by newly isolated Comamonas sp. UVS. J Hazard Mater 158:507–516

    Google Scholar 

  • Van Den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218

    Google Scholar 

  • Wang BE, Hu Y (2008) Bioaccumulation versus adsorption of reactive dye by immobilized growing Aspergillus fumigatus beads. J Hazard Mater 157:1–7

    Google Scholar 

  • Wang H, Su JQ, Zheng XW, Tian Y, Xiong X, Zheng TL (2009a) Bacterial decolorization and degradation of the reactive dye reactive red 180 by Citrobacter sp. CK3. Int Biodeter Biodegr 63:395–399

    Google Scholar 

  • Wang H, Zheng XW, Su JQ, TianY, Xiong X, Zheng TL (2009b) Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3. J Hazard Mater 171:654–659

    Google Scholar 

  • Wong PK, Yuen PY (1996) Decolorization and biodegradation of methyl red by Klebsiella pneumoniae RS-13. Water Res 30:1736–1744

    Google Scholar 

  • Xu M, Guo J, Sun G (2007) Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions. Appl Microbiol Biotechnol 76:719–726

    Google Scholar 

  • Yoo ES, Libra J, Wiesmann U (2000) Reduction of azo dyes by Desulfovibrio esulfuricans. Water Sci Technol 41:15–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Amoozegar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amoozegar, M.A., Mehrshad, M., Akhoondi, H. (2015). Application of Extremophilic Microorganisms in Decolorization and Biodegradation of Textile Wastewater. In: Singh, S. (eds) Microbial Degradation of Synthetic Dyes in Wastewaters. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-10942-8_12

Download citation

Publish with us

Policies and ethics