Skip to main content

Cellular Automaton Manipulator Array

  • Chapter
  • First Online:

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 13))

Abstract

We present a cellular automaton architecture for massive-parallel manipulation tasks. The cellular-automaton manipulator is an array of actuators, which interact locally with each other and generate coordinated manipulation forces for precise translation of the manipulated object. The cellular-automaton actuator arrays behave as an excitable medium, where initial perturbation leads to propagation of excitation waves. The excitation waves are physically mapped onto the hardware actuation waves. We analyse different types of excitation and manipulation patterns and physical implementations of the actuating surface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adamatzky, A.: Dynamical universal computation in excitable lattices. In: Margenstern, M. (ed.) MCU, vol. 2, pp. 194–213. IUT, Metz (1998)

    Google Scholar 

  2. Adamatzky, A.: Computing in Non-linear Media and Automata Collectives. Institute of Physics Publishing, Bristol (2001)

    Google Scholar 

  3. Adamatzky, A., Costello, B.D.L., Asai, T.: Reaction-Diffusion Computers. Elsevier, New York (2005)

    Google Scholar 

  4. Adamatzky, A., De Lacy Costello, B., Melhuish, C., Ratcliffe, N.: Experimental reaction-diffusion chemical processors for robot path planning. J. Intel. Robot Syst. 37(3), 233–249 (2003). doi:10.1023/A:1025414424756

  5. Adamatzky, A., Melhuish, C.: Phototaxis of mobile excitable lattices. Chaos. Soliton. Fract. 13(1), 171–184 (2002). doi:10.1016/S0960-0779(00)00233-2

  6. Adamatzky, A.I.: Controllable transmission of information in excitable media: The 2\(+\) medium. Adv. Mater. Opt. Electron. 5(3), 145–155 (1995). doi:10.1002/amo.860050303, http://dx.doi.org/10.1002/amo.860050303

  7. Aiello, E., Sleigh, M.A.: The metachronal wave of lateral cilia of mytilus edulis. J. Cell Biol. 54(3), 493–506 (1972)

    Article  Google Scholar 

  8. Ashley-Rollman, M., Pillai, P., Goodstein, M.: Simulating multi-million-robot ensembles. In: Proceedings—IEEE International Conference on Robotics and Automation, pp. 1006–1013 (2011)

    Google Scholar 

  9. Barr, D.R., Dudek, P.: Apron: a cellular processor array simulation and hardware design tool. EURASIP J. Adv. Signal Process. 2009, 9 (2009)

    Article  Google Scholar 

  10. Barr, D.R., Walsh, D., Dudek, P.: A smart surface simulation environment. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2013, pp. 4456–4461. IEEE (2013)

    Google Scholar 

  11. Berlin, A., Biegelsen, D., Cheung, P., Fromherz, M., Goldberg, D., Jackson, W., Preas, B., Reich, J., Swartz, L.E.: Motion control of planar objects using large-area arrays of mems-like distributed manipulators. Xerox Palo Alto Research Center CA/USA, Presented at Micromechatronics (2000)

    Google Scholar 

  12. Bohringer, K.F., Bhatt, V., Donald, B., Goldberg, K.: Algorithms for sensorless manipulation using a vibrating surface. Algorithmica 26(3–4), 389–429 (2000). (New York)

    Article  MathSciNet  Google Scholar 

  13. Bohringer, K.F., Donald, B.R., Mihailovich, R., MacDonald, N.C.: Sensorless manipulation using massively parallel microfabricated actuator arrays. In: Proceedings on IEEE International Conference on Robotics and Automation, 1994, pp. 826–833. IEEE (1994)

    Google Scholar 

  14. Boutoustous, K., Laurent, G., Dedu, E., Matignon, L., Bourgeois, J., Le Fort-Piat, N.: Distributed control architecture for smart surfaces. In: 2010 IEEE/RSJ International Conference Intelligent Robots and Systems, IROS’10, pp. 2018–2024, Taipei (2010)

    Google Scholar 

  15. Delettre, A., Laurent, G., Le Fort-Piat, N.: 2-dof contactless distributed manipulation using superposition of induced air flows. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’11, pp. 5121–5126. San Francisco, CA (2011). doi:10.1109/IROS.2011.6048251

  16. Delettre, A., Laurent, G.J., Fort-Piat, L., Varnier, C., et al.: 3-dof potential air flow manipulation by inverse modeling control. In: IEEE International Conference on Automation Science and Engineering (CASE), 2012, pp. 930–935. IEEE (2012)

    Google Scholar 

  17. Dhoutaut, D., Piranda, B., Bourgeois, J.: Efficient simulation of distributed sensing and control environments. In: Proceedings—2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, GreenCom-iThings-CPSCom 2013, pp. 452–459 (2013)

    Google Scholar 

  18. Georgilas, I., Adamatzky, A., Barr, D., Dudek, P., Melhuish, C.: Metachronal waves in cellular automata: Cilia-like manipulation in actuator arrays. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2013), pp. 261–271. Springer International Publishing (2014)

    Google Scholar 

  19. Georgilas, I., Adamatzky, A., Melhuish, C.: Manipulating objects with gliders in cellular automata. In: 2012 IEEE International Conference on Automation Science and Engineering (CASE), pp. 936–941. IEEE (2012)

    Google Scholar 

  20. Georgilas, I., Adamatzky, A., Melhuish, C.: Towards an intelligent distributed conveyor. In: Advances in Autonomous Robotics pp. 457–458 (2012)

    Google Scholar 

  21. Georgilas, I., Adamatzky, A., Melhuish, C.: Manipulating with excitations: Waves or gliders? In: Workshop notes of the ICRA Workshop in Unconventional Approaches to Robotics, Automation and Control Inspired by Nature, vol. International Conference in Robotics and Automation (ICRA). Karlruhe (2013)

    Google Scholar 

  22. Laurent, G.J., Delettre, A., Zeggari, R., Yahiaoui, R., Manceau, J.F., Fort-Piat, N.L.: Micropositioning and fast transport using a contactless micro-conveyor. Micromachines 5(1), 66–80 (2014). doi:10.3390/mi5010066, http://www.mdpi.com/2072-666X/5/1/66

  23. Luntz, J., Messner, W., Choset, H.: Distributed manipulation using discrete actuator arrays. Int. J. Rob. Res. 20(7), 553–583 (2001)

    Article  Google Scholar 

  24. Moon, H., Luntz, J.: Distributed manipulation of flat objects with two airflow sinks. IEEE Trans. Robot. 22(6), 1189–1201 (2006). doi:10.1109/TRO.2006.882921

  25. Mróz, Z., Stupkiewicz, S.: An anisotropic friction and wear model. Int. J. Solids Struct. 31(8), 1113–1131 (1994)

    Article  Google Scholar 

  26. Murphey, T., Burdick, J.: Feedback control methods for distributed manipulation systems that involve mechanical contacts. Int. J. Robot Res. 23(7–8), 763–781 (2004)

    Article  Google Scholar 

  27. Setter, E., Bucher, I.: Flexural vibration patterning using an array of actuators. J. Sound. Vib. 330(6), 1121–1140 (2011)

    Article  Google Scholar 

  28. Umbanhowar, P., Vose, T., Mitani, A., Hirai, S., Lynch, K.: The effect of anisotropic friction on vibratory velocity fields. In: Proccedings of 2012 IEEE International Conference on Robotics and Automation, pp. 2584–2591 (2012)

    Google Scholar 

  29. Vazquez-Otero, A., Faigl, J., Munuzuri, A.: Path planning based on reaction-diffusion process. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’12, pp. 896–901 (2012)

    Google Scholar 

  30. Vose, T., Turpin, M., Dames, P., Umbanhowar, P., Lynch, K.: Modeling, design, and control of 6-dof flexure-based parallel mechanisms for vibratory manipulation. Mech. Mach. Theory 64, 111–130 (2013)

    Google Scholar 

  31. Vose, T., Umbanhowar, P., Lynch, K.: Vibration-induced frictional force fields on a rigid plate. In: 2007 IEEE International Conference on Robotics, ICRA’07, pp. 660–667. Rome (2007)

    Google Scholar 

  32. Zmitrowicz, A.: Mathematical descriptions of anisotropic friction. Int. J. Solids Struct. 25(8), 837–862 (1989)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Georgilas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Georgilas, I., Adamatzky, A., Melhuish, C. (2015). Cellular Automaton Manipulator Array. In: Sirakoulis, G., Adamatzky, A. (eds) Robots and Lattice Automata. Emergence, Complexity and Computation, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-10924-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10924-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10923-7

  • Online ISBN: 978-3-319-10924-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics