Systems with Delay

  • Kaïs Ammari
  • Serge Nicaise
Part of the Lecture Notes in Mathematics book series (LNM, volume 2124)


We end up this book by considering different examples of systems with delay for which our abstract framework can be applied.


  1. 22.
    K. Ammari, M. Tucsnak, Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force. SIAM J. Control Optim. 39(4), 1160–1181 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 23.
    K. Ammari, M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM Control Optim. Calc. Var. 6, 361–386 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 51.
    R. Dáger, E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 50 (Springer, Berlin, 2006)Google Scholar
  4. 86.
    I. Lasiecka, R. Triggiani, P.-F. Yao, Inverse/observability estimates for second-order hyperbolic equations with variable coefficients. J. Math. Anal. Appl. 235(1), 13–57 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 101.
    F.A. Mehmeti, A characterisation of generalized c notion on nets. Integral Eq. Operator Theory 9, 753–766 (1986)CrossRefzbMATHGoogle Scholar
  6. 102.
    F.A. Mehmeti, Nonlinear Wave in Networks. Mathematical Research, vol. 80 (Akademie Verlag, Berlin, 1994)Google Scholar
  7. 106.
    S. Nicaise, Spectre des réseaux topologiques finis. Bull. Sc. Math., 2ème série 111, 401–413 (1987)Google Scholar
  8. 107.
    S. Nicaise, C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45(5), 1561–1585 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 108.
    S. Nicaise, J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks. Netw. Heterog. Media 2(3), 425–479 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 110.
    S. Nicaise, O. Zaïr, Identifiability, stability and reconstruction results of point sources by boundary measurements in heteregeneous trees. Rev. Mat. Complut. 16, 151–178 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 129.
    J. von Below, A characteristic equation associated to an eigenvalue problem on c 2-networks. Linear Algebra Appl. 71, 309–325 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 132.
    J. von Below, Parabolic network equations, Habilitation thesis, 1993Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kaïs Ammari
    • 1
  • Serge Nicaise
    • 2
  1. 1.Dept of Mathematics Faculty of SciencesUniversity of MonastirMonastirTunisia
  2. 2.Lab. de Mathématiques et de leurs applications de Valenciennes (LAMAV)Univ. de Valenciennes et du Hainaut CambrésisValenciennesFrance

Personalised recommendations