Advertisement

Asymptotic Behaviour of Concrete Dissipative Systems

  • Kaïs Ammari
  • Serge Nicaise
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2124)

Abstract

We study the large time behavior of the solution of a homogenous string equation with a homogenous Dirichlet boundary condition at the left end and a homogenous Dirichlet or Neumann boundary condition at the right end. A pointwise interior actuator gives a linear viscous damping term.

Bibliography

  1. 10.
    K. Ammari, Stabilisation d’une classe d’équations d’évolution du deuxième ordre en temps, Ph.D. thesis, Ecole Polytechnique, 2000Google Scholar
  2. 11.
    K. Ammari, Dirichlet boundary stabilization of the wave equation. Asymptot. Anal. 30(2), 117–130 (2002)zbMATHMathSciNetGoogle Scholar
  3. 14.
    K. Ammari, A. Henrot, M. Tucsnak, Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string. Asymptot. Anal. 28(3–4), 215–240 (2001)zbMATHMathSciNetGoogle Scholar
  4. 15.
    K. Ammari, M. Jellouli, Stabilization of star-shaped networks of strings. Differ. Integral Equ. 17(11–12), 1395–1410 (2004)zbMATHMathSciNetGoogle Scholar
  5. 16.
    K. Ammari, M. Jellouli, Remark on stabilization of tree-shaped networks of strings. Appl. Math. 52(4), 327–343 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 17.
    K. Ammari, M. Jellouli, M. Khenissi, Stabilization of generic trees of strings. J. Dyn. Control Syst. 11(2), 177–193 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 18.
    K. Ammari, Z. Liu, M. Tucsnak, Decay rates for a beam with pointwise force and moment feedback. Math. Control Signals Syst. 15(3), 229–255 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 19.
    K. Ammari, D. Mercier, V. Régnier, J. Valein, Spectral analysis and stabilization of a chain of serially connected Euler-Bernoulli beams and strings. Commun. Pure Appl. Anal. 11(2), 785–807 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 22.
    K. Ammari, M. Tucsnak, Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force. SIAM J. Control Optim. 39(4), 1160–1181 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 23.
    K. Ammari, M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM Control Optim. Calc. Var. 6, 361–386 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 27.
    C. Bardos, L. Halpern, G. Lebeau, J. Rauch, E. Zuazua, Stabilisation de l’équation des ondes au moyen d’un feedback portant sur la condition aux limites de Dirichlet. Asymptot. Anal. 4(4), 285–291 (1991)zbMATHMathSciNetGoogle Scholar
  12. 28.
    C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 38.
    C. Castro, S.J. Cox, Achieving arbitrarily large decay in the damped wave equation. SIAM J. Control Optim. 39(6), 1748–1755 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 41.
    G. Chen, M. Coleman, H.H. West, Pointwise stabilization in the middle of the span for second order systems, nonuniform and uniform exponential decay of solutions. SIAM J. Appl. Math. 47(4), 751–780 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 42.
    G. Chen, M.C. Delfour, A.M. Krall, G. Payre, Modeling, stabilization and control of serially connected beams. SIAM J. Control Optim. 25(3), 526–546 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 43.
    G. Chen, S.G. Krantz, D.L. Russell, C.E. Wayne, H.H. West, M. P. Coleman, Analysis, designs, and behavior of dissipative joints for coupled beams. SIAM J. Appl. Math. 49(6), 1665–1693 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 44.
    F. Conrad, Stabilization of beams by pointwise feedback control. SIAM J. Control Optim. 28(2), 423–437 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 46.
    S. Cox, E. Zuazua, The rate at which energy decays in a damped string. Commun. Partial Differ. Equ. 19(1–2), 213–243 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 49.
    R. Dáger, Observation and control of vibrations in tree-shaped networks of strings. SIAM J. Control Optim. 43(2), 590–623 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 50.
    R. Dáger, E. Zuazua, Controllability of tree-shaped networks of vibrating strings. C. R. Acad. Sci. Paris Sér. I Math. 332(12), 1087–1092 (2001)CrossRefzbMATHGoogle Scholar
  21. 51.
    R. Dáger, E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 50 (Springer, Berlin, 2006)Google Scholar
  22. 55.
    B. Dekoninck, S. Nicaise, The eigenvalue problem for networks of beams. Linear Algebra Appl. 314(1–3), 165–189 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 58.
    P. Freitas, Optimizing the rate of decay of solutions of the wave equation using genetic algorithms: a counterexample to the constant damping conjecture. SIAM J. Control Optim. 37(2), 376–387 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 61.
    P. Grisvard, Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24 (Pitman, Boston, London, Melbourne, 1985)Google Scholar
  25. 68.
    F.L. Huang, Characteristic conditions for exponential stability of linear dynamical system in Hilbert spaces. Ann. Differ. Equ. 1, 43–56 (1985)zbMATHGoogle Scholar
  26. 69.
    A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41(1), 367–379 (1936)CrossRefMathSciNetGoogle Scholar
  27. 71.
    S. Jaffard, M. Tucsnak, E. Zuazua, Singular internal stabilization of the wave equation. J. Differ. Equ. 145(1), 184–215 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 72.
    D. Jerison, C.E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130(1), 161–219 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 79.
    J.E. Lagnese, G. Leugering, E. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures (Birkhäuser, Boston, 1994)CrossRefzbMATHGoogle Scholar
  30. 82.
    I. Lasiecka, J.-L. Lions, R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators. J. Math. Pures Appl. (9) 65(2), 149–192 (1986)Google Scholar
  31. 83.
    I. Lasiecka, R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with \(L_{2}(0,\infty;L_{2}(\Gamma ))\)-feedback control in the Dirichlet boundary conditions. J. Differ. Equ. 66(3), 340–390 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 84.
    I. Lasiecka, R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions. Appl. Math. Optim. 25(2), 189–224 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 87.
    G. Lebeau, Équation des ondes amorties, in Algebraic and Geometric Methods in Mathematical Physics (Kaciveli, 1993). Mathematical Physics Studies, vol. 19 (Kluwer Academic, Dordrecht, 1996), pp. 73–109Google Scholar
  34. 88.
    G. Lebeau, L. Robbiano, Stabilisation de l’équation des ondes par le bord. Duke Math. J. 86(3), 465–491 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 89.
    G. Leugering, E. Zuazua, On exact controllability of generic trees, in Contrôle des systèmes gouvernés par des équations aux dérivées partielles (Nancy, 1999). ESAIM Proceedings, vol. 8 (Society of Industrial and Applied Mathematics, Paris, 2000), pp. 95–105Google Scholar
  36. 90.
    J.-L. Lions, Contrôle des systèmes distribués singuliers. Méthodes Mathématiques de l’Informatique, vol. 13. (Gauthier-Villars, Montrouge, 1983)Google Scholar
  37. 91.
    J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 8 (Masson, Paris, 1988) Contrôlabilité exacte. [Exact controllability], With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. RauchGoogle Scholar
  38. 93.
    J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications. vol. 1. Travaux et Recherches Mathématiques, No. 17 (Dunod, Paris, 1968)Google Scholar
  39. 95.
    K.S. Liu, Energy decay problems in the design of a point stabilizer for coupled string vibrating systems. SIAM J. Control Optim. 26(6), 1348–1356 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 96.
    K.S. Liu, F.L. Huang, G. Chen, Exponential stability analysis of a long chain of coupled vibrating strings with dissipative linkage. SIAM J. Appl. Math. 49(6), 1694–1707 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 101.
    F.A. Mehmeti, A characterisation of generalized c notion on nets. Integral Eq. Operator Theory 9, 753–766 (1986)CrossRefzbMATHGoogle Scholar
  42. 102.
    F.A. Mehmeti, Nonlinear Wave in Networks. Mathematical Research, vol. 80 (Akademie Verlag, Berlin, 1994)Google Scholar
  43. 105.
    S. Nicaise, Diffusion sur les espaces ramifiés, Ph.D. thesis, U. Mons (Belgium), 1986Google Scholar
  44. 106.
    S. Nicaise, Spectre des réseaux topologiques finis. Bull. Sc. Math., 2ème série 111, 401–413 (1987)Google Scholar
  45. 112.
    J. Prüss, On the spectrum of C 0-semigroups. Trans. Am. Math. Soc. 284(2), 847–857 (1984)CrossRefzbMATHGoogle Scholar
  46. 114.
    R. Rebarber, Exponential stability of coupled beams with dissipative joints: a frequency domain approach. SIAM J. Control Optim. 33(1), 1–28 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 116.
    L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptotic Anal. 10(2), 95–115 (1995)zbMATHMathSciNetGoogle Scholar
  48. 123.
    M. Tucsnak, Regularity and exact controllability for a beam with piezoelectric actuator. SIAM J. Control Optim. 34(3), 922–930 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  49. 124.
    M. Tucsnak, On the pointwise stabilization of a string, in Control and Estimation of Distributed Parameter Systems (Vorau, 1996). International Series of Numerical Mathematics, vol. 126 (Birkhäuser, Basel, 1998), pp. 287–295Google Scholar
  50. 129.
    J. von Below, A characteristic equation associated to an eigenvalue problem on c 2-networks. Linear Algebra Appl. 71, 309–325 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  51. 132.
    J. von Below, Parabolic network equations, Habilitation thesis, 1993Google Scholar
  52. 134.
    G. Weiss, R.F. Curtain, Exponential stabilization of a Rayleigh beam using collocated control. IEEE Trans. Automat. Control 53(3), 643–654 (2008)CrossRefMathSciNetGoogle Scholar
  53. 135.
    G. Weiss, O.J. Staffans, M. Tucsnak, Well-posed linear systems—a survey with emphasis on conservative systems. Int. J. Appl. Math. Comput. Sci. 11(1), 7–33 (2001). Mathematical theory of networks and systems (Perpignan, 2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kaïs Ammari
    • 1
  • Serge Nicaise
    • 2
  1. 1.Dept of Mathematics Faculty of SciencesUniversity of MonastirMonastirTunisia
  2. 2.Lab. de Mathématiques et de leurs applications de Valenciennes (LAMAV)Univ. de Valenciennes et du Hainaut CambrésisValenciennesFrance

Personalised recommendations