Advertisement

Stabilization of Second Order Evolution Equations by a Class of Unbounded Feedbacks

  • Kaïs Ammari
  • Serge Nicaise
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2124)

Abstract

In this chapter we consider second order evolution equations with unbounded feedbacks. Under a regularity assumption we show that observability properties for the undamped problem imply decay estimates for the damped problem. We consider both uniform and non uniform decay properties.

Bibliography

  1. 24.
    W. Arendt, C.J.K. Batty, Tauberian theorems and stability of one-parameter semigroups. Trans. Am. Math. Soc. 305(2), 837–852 (1988)CrossRefMathSciNetGoogle Scholar
  2. 25.
    S.A. Avdonin, S.A. Ivanov, Families of Exponentials (Cambridge University Press, Cambridge, 1995). The method of moments in controllability problems for distributed parameter systems, Translated from the Russian and revised by the authorsGoogle Scholar
  3. 29.
    A. Bátkai, K.-J. Engel, J. Prüss, R. Schnaubelt, Polynomial stability of operator semigroups. Math. Nachr. 279(13–14), 1425–1440 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 31.
    C.J.K. Batty, T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ. 8(4), 765–780 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 34.
    A. Bensoussan, G. Da Prato, M.C. Delfour, S.K. Mitter, Representation and Control of Infinite-Dimensional Systems. Systems & Control: Foundations & Applications, vol. 1 (Birkhäuser, Boston, 1992)Google Scholar
  6. 35.
    A. Borichev, Y. Tomilov, Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347(2), 455–478 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 48.
    R.F. Curtain, H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics, vol. 21 (Springer, New York, 1995)Google Scholar
  8. 56.
    G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation (Springer, New York, 1974). Translated from the second German edition by Walter NaderCrossRefzbMATHGoogle Scholar
  9. 59.
    L. Gearhart, Spectral theory for contraction semigroups on Hilbert space. Trans. Am. Math. Soc. 236, 385–394 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 66.
    A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portugal Math. 46(3), 245–258 (1989)zbMATHMathSciNetGoogle Scholar
  11. 68.
    F.L. Huang, Characteristic conditions for exponential stability of linear dynamical system in Hilbert spaces. Ann. Differ. Equ. 1, 43–56 (1985)zbMATHGoogle Scholar
  12. 93.
    J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications. vol. 1. Travaux et Recherches Mathématiques, No. 17 (Dunod, Paris, 1968)Google Scholar
  13. 98.
    Z. Liu, S. Zheng, Semigroups Associated with Dissipative Systems Chapman & Hall/CRC Research Notes in Mathematics (Chapman & Hall/CRC, Boca Raton, 1999)Google Scholar
  14. 100.
    Z.-H. Luo, B.-Z. Guo, O. Morgul, Stability and Stabilization of Infinite Dimensional Systems with Applications. Communications and Control Engineering Series (Springer, London, 1999)CrossRefzbMATHGoogle Scholar
  15. 112.
    J. Prüss, On the spectrum of C 0-semigroups. Trans. Am. Math. Soc. 284(2), 847–857 (1984)CrossRefzbMATHGoogle Scholar
  16. 117.
    D.L. Russell, Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods. J. Differ. Equ. 19(2), 344–370 (1975)CrossRefzbMATHGoogle Scholar
  17. 118.
    D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20(4), 639–739 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 122.
    H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. North-Holland Mathematical Library, vol. 18 (North-Holland Publishing, Amsterdam, 1978)Google Scholar
  19. 125.
    M. Tucsnak, G. Weiss, How to get a conservative well-posed linear system out of thin air. II. Controllability and stability. SIAM J. Control Optim. 42(3), 907–935 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 126.
    M. Tucsnak, G. Weiss, Observation and Control for Operator Semigroups. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks] (Birkhäuser Verlag, Basel, 2009)Google Scholar
  21. 133.
    G. Weiss, Regular linear systems with feedback. Math. Control Signals Syst. 7(1), 23–57 (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kaïs Ammari
    • 1
  • Serge Nicaise
    • 2
  1. 1.Dept of Mathematics Faculty of SciencesUniversity of MonastirMonastirTunisia
  2. 2.Lab. de Mathématiques et de leurs applications de Valenciennes (LAMAV)Univ. de Valenciennes et du Hainaut CambrésisValenciennesFrance

Personalised recommendations