Skip to main content

Convergence of Explicitly Correlated Gaussian Wave Functions

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8500))

Abstract

Results of high precision quantum-chemical calculations on selected diatomic molecular systems are reported. The wave function is expanded in the basis of exponentially correlated Gaussian functions. For each of the systems the Schrödinger equation is solved variationally with several lengths of this expansion, which enables the energy convergence to be studied as well as an extrapolation to infinite basis set size and an error estimation to be performed. The algorithms applied to evaluate matrix elements and the matrix diagonalization are analyzed for their scalability, and their strong and weak points are revealed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Komasa, J., Piszczatowski, K., Lach, G., Przybytek, M., Jeziorski, B., Pachucki, K.: Quantum Electrodynamics Effects in Rovibrational Spectra of Molecular Hydrogen. J. Chem. Theory Comput. 7, 3105–3115 (2011)

    Article  Google Scholar 

  2. Kassi, S., Campargue, A., Pachucki, K., Komasa, J.: The absorption spectrum of D2: Ultrasensitive cavity ring down spectroscopy of the (2-0) band near 1.7 μm and accurate ab initio line list up to 24 000 cm− 1. J. Chem. Phys. 136, 184309 (2012)

    Article  Google Scholar 

  3. Cencek, W., Przybytek, M., Komasa, J., Mehl, J.B., Jeziorski, B., Szalewicz, K.: Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium. J. Chem. Phys. 136, 224303 (2012)

    Article  Google Scholar 

  4. Salumbides, E.J., Koelemeij, J.C.J., Komasa, J., Pachucki, K., Eikema, K.S.E., Ubachs, W.: Bounds on fifth forces from precision measurements on molecules. Phys. Rev. D 87, 112008 (2013)

    Article  Google Scholar 

  5. Singer, K.: The Use of Gaussian (Exponential Quadratic) Wave Functions in Molecular Problems. I. General Formulae for the Evaluation of Integrals. Proc. R. Soc. London, Ser. A 258, 412 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rychlewski, J., Komasa, J., Rychlewski, J. (eds.): Explicitly Correlated Wave Functions in Chemistry and Physics. Kluwer Academic Publisher, Dordrecht (2003)

    Google Scholar 

  7. Mitroy, J., Bubin, S., Horiuchi, W., Suzuki, Y., Adamowicz, L., Cencek, W., Szalewicz, K., Komasa, J., Blume, D., Varga, K.: Theory and application of explicitly correlated Gaussians. Rev. Mod. Phys. 85, 693–749 (2013)

    Article  Google Scholar 

  8. Epstein, S.T.: The Variation Method in Quantum Chemistry. Academic Press, New York (1974)

    Google Scholar 

  9. Kopta, P., Kulczewski, M., Kurowski, K., Piontek, T., Gepner, P., Puchalski, M., Komasa, J.: Parallel application benchmarks and performance evaluation of the Intel Xeon 7500 family processors. Procedia Computer Science 4, 372–381 (2011)

    Article  Google Scholar 

  10. Cencek, W., Komasa, J., Rychlewski, J.: Benchmark calculations for two-electron systems using explicitly correlated Gaussian functions. Chem. Phys. Lett. 246, 417–420 (1995)

    Article  Google Scholar 

  11. Pachucki, K.: Born-Oppenheimer potential for H2. Phys. Rev. A 82, 032509 (2010)

    Article  Google Scholar 

  12. Pachucki, K.: Born-Oppenheimer potential for HeH + . Phys. Rev. A 85, 042511 (2012)

    Article  Google Scholar 

  13. Pachucki, K.: Two-center two-electron integrals with exponential functions. Phys. Rev. A 80, 032520 (2009)

    Article  Google Scholar 

  14. Pachucki, K.: Correlated exponential functions in high-precision calculations for diatomic molecules. Phys. Rev. A 86, 052514 (2012)

    Google Scholar 

  15. Cencek, W., Szalewicz, K.: Ultra-high accuracy calculations for hydrogen molecule and helium dimer. J. Quantum Chem. 108, 2191 (2008)

    Article  Google Scholar 

  16. Pachucki, K., Komasa, J.: Rovibrational levels of helium hydride ion. J. Chem. Phys. 137, 204314 (2012)

    Article  Google Scholar 

  17. Cencek, W., Rychlewski, J.: Benchmark calculations for He\(_2^+\) and LiH molecules using explicitly correlated Gaussian functions. Chem. Phys. Lett. 320, 549–552 (2000)

    Article  Google Scholar 

  18. Tung, W.-C., Pavanello, M., Adamowicz, L.: Very accurate potential energy curve of the He\(_2^+\) ion. J. Chem. Phys. 136, 104309 (2012)

    Article  Google Scholar 

  19. Lepp, S., Stancil, P.C., Dalgarno, A.: Atomic and molecular processes in the early Universe. J. Phys. B: At. Mol. Opt. Phys. 35, R57–R80 (2002)

    Article  Google Scholar 

  20. Stwalley, W.C., Zemke, W.T.: Spectroscopy and Structure of the Lithium Hydride Diatomic Molecules and Ions. J. Phys. Chem. Ref. Data 22, 87 (1993)

    Article  Google Scholar 

  21. Coxon, J.A., Dickinson, C.S.: Application of direct potential fitting to line position data for the X1Σ +  and A1Σ +  states of LiH. J. Chem. Phys. 121, 9378 (2004)

    Article  Google Scholar 

  22. Tung, W.-C., Pavanello, M., Adamowicz, L.: Very accurate potential energy curve of the LiH molecule. J. Chem. Phys. 134, 064117 (2011)

    Article  Google Scholar 

  23. Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7, 155 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kiełbasiński, A., Schwetlick, H.: Numeryczna algebra liniowa. Wprowadzenie do obliczeń zautomatyzowanych. Wydawnictwa Naukowo-Techniczne, Warszawa (1992) (in Polish)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kopta, P., Piontek, T., Kurowski, K., Puchalski, M., Komasa, J. (2014). Convergence of Explicitly Correlated Gaussian Wave Functions. In: Bubak, M., Kitowski, J., Wiatr, K. (eds) eScience on Distributed Computing Infrastructure. Lecture Notes in Computer Science, vol 8500. Springer, Cham. https://doi.org/10.1007/978-3-319-10894-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10894-0_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10893-3

  • Online ISBN: 978-3-319-10894-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics