Vacation and Polling Models with Retrials

  • Onno Boxma
  • Jacques Resing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8721)


We study a vacation-type queueing model, and a single-server multi-queue polling model, with the special feature of retrials. Just before the server arrives at a station there is some deterministic glue period. Customers (both new arrivals and retrials) arriving at the station during this glue period will be served during the visit of the server. Customers arriving in any other period leave immediately and will retry after an exponentially distributed time. Our main focus is on queue length analysis, both at embedded time points (beginnings of glue periods, visit periods and switch- or vacation periods) and at arbitrary time points.


Vacation queue polling model retrials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antunes, N., Fricker, C., Roberts, J.: Stability of multi-server polling system with server limits. Queueing Systems 68, 229–235 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Antunes, N., Fricker, C., Robert, P., Roberts, J.: Traffic capacity of large WDM Passive Optical Networks. In: Proceedings 22nd International Teletraffic Congress, ITC 22, Amsterdam (September 2010)Google Scholar
  3. 3.
    Artalejo, J.R., Gomez-Corral, A.: Retrial Queueing Systems: A Computational Approach. Springer, Berlin (2008)CrossRefGoogle Scholar
  4. 4.
    Athreya, K.B., Ney, P.E.: Branching Processes. Springer, Berlin (1972)CrossRefzbMATHGoogle Scholar
  5. 5.
    Boon, M.A.A., van der Mei, R.D., Winands, E.M.M.: Applications of polling systems. SORMS 16, 67–82 (2011)Google Scholar
  6. 6.
    Boxma, O.J., Cohen, J.W.: The M/G/1 queue with permanent customers. IEEE J. Sel. Areas in Commun. 9, 179–184 (1991)CrossRefGoogle Scholar
  7. 7.
    Falin, G.I., Templeton, J.G.C.: Retrial Queues. Chapman and Hall, London (1997)CrossRefzbMATHGoogle Scholar
  8. 8.
    Koonen, A.M.J.: Personal communication (2014)Google Scholar
  9. 9.
    Langaris, C.: A polling model with retrial of customers. Journal of the Operations Research Society of Japan 40, 489–507 (1997)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Langaris, C.: Gated polling models with customers in orbit. Mathematical and Computer Modelling 30, 171–187 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Langaris, C.: Markovian polling system with mixed service disciplines and retrial customers. Top 7, 305–322 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Levy, H., Sidi, M.: Polling models: Applications, modeling and optimization. IEEE Trans. Commun. 38, 1750–1760 (1990)CrossRefGoogle Scholar
  13. 13.
    Maier, M.: Optical Switching Networks. Cambridge University Press, Cambridge (2008)Google Scholar
  14. 14.
    Olsen, T.L., van der Mei, R.D.: Periodic polling systems in heavy traffic: Distribution of the delay. Journal of Applied Probability 40, 305–326 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Quine, M.P.: The multitype Galton-Watson process with immigration. Journal of Applied Probability 7, 411–422 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Resing, J.A.C.: Polling systems and multitype branching processes. Queueing Systems 13, 409–426 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Rogiest, W.: Stochastic Modeling of Optical Buffers. Ph.D. Thesis, Ghent University, Ghent, Belgium (2008)Google Scholar
  18. 18.
    Takagi, H.: Application of polling models to computer networks. Comput. Netw. ISDN Syst. 22, 193–211 (1991)CrossRefGoogle Scholar
  19. 19.
    Takagi, H.: Queueing Analysis: A Foundation of Performance Evaluation. Vacation and Priority Systems, vol. 1. Elsevier Science Publishers, Amsterdam (1991)zbMATHGoogle Scholar
  20. 20.
    Takagi, H.: Queueing analysis of polling models: progress in 1990-1994. In: Dshalalow, J.H. (ed.) Frontiers in Queueing: Models, Methods and Problems, pp. 119–146. CRC Press, Boca Raton (1997)Google Scholar
  21. 21.
    Takagi, H.: Analysis and application of polling models. In: Reiser, M., Haring, G., Lindemann, C. (eds.) Dagstuhl Seminar 1997. LNCS, vol. 1769, pp. 424–442. Springer, Heidelberg (2000)Google Scholar
  22. 22.
    Vishnevskii, V.M., Semenova, O.V.: Mathematical methods to study the polling systems. Autom. Remote Control 67, 173–220 (2006)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Onno Boxma
    • 1
  • Jacques Resing
    • 1
  1. 1.EURANDOM and Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations