Automated Capacity Planning for PEPA Models

  • Christopher D. Williams
  • Jane Hillston
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8721)


Capacity planning is concerned with the provisioning of systems in order to ensure that they meet the demand or performance requirements of users. Currently for PEPA models, a modeller who wishes to solve a capacity planning problem has to either carry out a manual search for an optimal configuration or work outside the provided tool suite. We present a new extension to the Eclipse Plug-in for PEPA which integrates automated capacity planning into the functionality of the tool, thus allowing optimal configurations of large scale PEPA models to be found.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hillston, J., Tribastone, M., Gilmore, S.: Stochastic Process Algebras: From Individuals to Populations. Computer Journal 55(7), 866–881 (2012)CrossRefGoogle Scholar
  2. 2.
    Marco, D., Cairns, D., Shankland, C.: Optimisation of process algebra models using evolutionary computation. In: IEEE Congress on Evolutionary Computation, pp. 1296–1301 (2011)Google Scholar
  3. 3.
    Marco, D., Scott, E., Cairns, D., Graham, A., Allen, J., Mahajan, S., Shankland, C.: Investigating co-infection dynamics through evolution of Bio-PEPA model parameters: A combined process algebra and evolutionary computing approach. In: Gilbert, D., Heiner, M. (eds.) CMSB 2012. LNCS, vol. 7605, pp. 227–246. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Karaman, S., Shima, T., Frazzoli, E.: A process algebra genetic algorithm. IEEE Transactions on Evolutionary Computation 16(4), 489–503 (2012)CrossRefGoogle Scholar
  5. 5.
    Geisweiller, N.: Finding the Most Likely Values inside a PEPA Model According to Partially Observable Executions. PhD thesis, LAAS (2006)Google Scholar
  6. 6.
    Cerotti, D., Gribaudo, M., Piazzolla, P., Serazzi, G.: Asymptotic behaviour and performance constraints of replication policies. In: Proceedings of PASM 2014 (2014)Google Scholar
  7. 7.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press (2005)Google Scholar
  8. 8.
    Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process algebra models. IEEE Transactions on Software Engineering 38(1), 205–219 (2012)CrossRefGoogle Scholar
  9. 9.
    Tribastone, M., Duguid, A., Gilmore, S.: The PEPA Eclipse Plugin. Performance Evaluation Review 36(4), 28 (2009)CrossRefGoogle Scholar
  10. 10.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization; an overview. Swarm Intelligence (1), 33 (2007)Google Scholar
  11. 11.
    Luke, S.: Essentials of metaheuristics, Lulu (2011)Google Scholar
  12. 12.
    Williams, C.: A capacity planning tool for PEPA. Master’s thesis, School of Informatics, University of Edinburgh (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christopher D. Williams
    • 1
  • Jane Hillston
    • 1
  1. 1.LFCS, School of InformaticsUniversity of EdinburghEdinburghScotland, UK

Personalised recommendations