Skip to main content

Obfuscation ⇒ (IND-CPA Security \(\not\Rightarrow\) Circular Security)

  • Conference paper
Security and Cryptography for Networks (SCN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8642))

Included in the following conference series:

Abstract

Circular security is an important notion for public-key encryption schemes and is needed by several cryptographic protocols. In circular security the adversary is given an extra “hint” consisting of a cycle of encryption of secret keys i.e.,  \(\left(E_{pk_1}(sk_2),\ldots, E_{pk_n}(sk_1)\right)\). A natural question is whether every IND-CPA encryption scheme is also circular secure. It is trivial to see that this is not the case when n = 1. In 2010 a separation for n = 2 was shown by [ABBC10,GH10] under standard assumptions in bilinear groups.

In this paper we finally settle the question showing that for every n there exists an IND-CPA secure scheme which is not n-circular secure.

Our result relies on the recent progress in cryptographic obfuscation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 403–422. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

    Article  MathSciNet  Google Scholar 

  5. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–218. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. CRYPTO 2014. Cryptology ePrint Archive, Report 2013/642 (2014), http://eprint.iacr.org/

  10. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 540–557. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)

    Google Scholar 

  15. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013)

    Google Scholar 

  17. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  18. Green, M., Hohenberger, S.: CPA and CCA-secure encryption systems that are not 2-circular secure. IACR Cryptology ePrint Archive 2010, 144 (2010)

    Google Scholar 

  19. Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 520–536. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfuscating re-encryption. J. Cryptology 24(4), 694–719 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  22. Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP from indistinguishability obfuscation. Cryptology ePrint Archive, Report 2014/213 (2014), http://eprint.iacr.org/

  23. Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for arbitrary length key cycles. Cryptology ePrint Archive, Report 2013/683 (2013), http://eprint.iacr.org/

  24. Rothblum, R.D.: On the circular security of bit-encryption. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 579–598. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable encryption, and more. In: STOC (2014)

    Google Scholar 

  26. Wee, H.: On obfuscating point functions. In: STOC, pp. 523–532 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Marcedone, A., Orlandi, C. (2014). Obfuscation ⇒ (IND-CPA Security \(\not\Rightarrow\) Circular Security). In: Abdalla, M., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2014. Lecture Notes in Computer Science, vol 8642. Springer, Cham. https://doi.org/10.1007/978-3-319-10879-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10879-7_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10878-0

  • Online ISBN: 978-3-319-10879-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics