Skip to main content

Charge Transport and Recombination in Organic Solar Cells (OSCs)

  • Chapter
  • First Online:
Organic and Hybrid Solar Cells

Abstract

Organic compounds are mainly hydrocarbon compounds with a backbone of carbon atoms. The strong bonds that form the molecular backbone are a result of overlap of sp2 hybridized atomic orbitals of adjacent carbon atoms, yielding a bonding σ and an antibonding σ* orbitals. The remaining unhybridized p orbitals overlap and form π and π*orbitals. The energies of π and π* orbitals are higher than those of σ orbitals, whereas energies of π* orbitals are lower than those of σ orbitals. Based on Pauli exclusion principle and Hund’s rule, the energies of π and π* orbitals are defined as highest occupied molecular orbital (HOMO), and lowest unoccupied molecular orbitals (LUMO), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Coropceanu, V. et al. Charge transport in organic semiconductors. Chemical Reviews 107, 926–952, doi:10.1021/cr050140x (2007).

    Google Scholar 

  2. Shuai, Z., Geng, H., Xu, W., Liao, Y. & Andre, J.-M. From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation. Chemical Society Reviews 43, 2662–2679, doi:10.1039/C3CS60319A (2014).

    Google Scholar 

  3. Horowitz, G. Organic field-effect transistors. Advanced Materials 10, 365–377, doi:10.1002/(sici)1521–4095(199803)10:5 < 3.0.co;2-u (1998).

    Google Scholar 

  4. Borsenberger, P. M., Pautmeier, L. & Bassler, H. CHARGE TRANSPORT IN DISORDERED MOLECULAR-SOLIDS. Journal of Chemical Physics 94, 5447–5454, doi:10.1063/1.460506 (1991).

    Google Scholar 

  5. Schoonveld, W. A., Vrijmoeth, J. & Klapwijk, T. M. Intrinsic charge transport properties of an organic single crystal determined using a multiterminal thin-film transistor. Applied Physics Letters 73, 3884–3886, doi:10.1063/1.122924 (1998).

    Google Scholar 

  6. Meijer, E. J., Matters, M., Herwig, P. T., de Leeuw, D. M. & Klapwijk, T. M. The Meyer-Neldel rule in organic thin-film transistors. Applied Physics Letters 76, 3433–3435, doi:10.1063/1.126669 (2000).

    Google Scholar 

  7. Kippelen, B. & Brédas, J.-L. Organic photovoltaics. Energy & Environmental Science 2, 251, doi:10.1039/b812502n (2009).

    Google Scholar 

  8. Brenner, T. J. K., Hwang, I., Greenham, N. C. & McNeill, C. R. Device physics of inverted all-polymer solar cells. Journal of Applied Physics 107, 114501, doi:10.1063/1.3371364 (2010).

    Google Scholar 

  9. Bisquert, J. & Garcia-Belmonte, G. On Voltage, Photovoltage, and Photocurrent in Bulk Heterojunction Organic Solar Cells. Journal of Physical Chemistry Letters 2, 1950–1964, doi:10.1021/jz2004864 (2011).

    Google Scholar 

  10. Scharber, M. C. & Sariciftci, N. S. Efficiency of bulk-heterojunction organic solar cells. Progress in Polymer Science 38, 1929–1940, doi:10.1016/j.progpolymsci.2013.05.001 (2013).

    Google Scholar 

  11. Qi, B. & Wang, J. Open-circuit voltage in organic solar cells. Journal of Materials Chemistry 22, 24315–24325, doi:10.1039/c2jm33719c (2012).

    Google Scholar 

  12. Cowan, S. R., Roy, A. & Heeger, A. J. Recombination in polymer-fullerene bulk heterojunction solar cells. Physical Review B 82, 245207 (2010).

    Google Scholar 

  13. Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O. & Manca, J. V. Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells. Physical Review B 81, 125204 (2010).

    Google Scholar 

  14. Wetzelaer, G.-J. A. H., Kuik, M. & Blom, P. W. M. Identifying the Nature of Charge Recombination in Organic Solar Cells from Charge-Transfer State Electroluminescence. Advanced Energy Materials 2, 1232–1237, doi:10.1002/aenm.201200009 (2012).

    Google Scholar 

  15. Wetzelaer, G.-J. A. H., Kuik, M., Lenes, M. & Blom, P. W. M. Origin of the dark-current ideality factor in polymer:fullerene bulk heterojunction solar cells. Applied Physics Letters (2011).

    Google Scholar 

  16. Yamamoto, S., Orimo, A., Ohkita, H., Benten, H. & Ito, S. Molecular Understanding of the Open-Circuit Voltage of Polymer:Fullerene Solar Cells. Advanced Energy Materials 2, 229–237, doi:10.1002/aenm.201100549 (2012).

    Google Scholar 

  17. Guo, X. et al. Polymer solar cells with enhanced fill factors. Nat Photon 7, 825–833, doi:10.1038/nphoton.2013.207 http://www.nature.com/nphoton/journal/v7/n10/abs/nphoton.2013.207.html#supplementary-information (2013).

  18. Dibb, G. F. A., Kirchartz, T., Credgington, D., Durrant, J. R. & Nelson, J. Analysis of the Relationship between Linearity of Corrected Photocurrent and the Order of Recombination in Organic Solar Cells. Journal of Physical Chemistry Letters 2, 2407–2411, doi:10.1021/jz201104d (2011).

    Google Scholar 

  19. Mihailetchi, V. D., Xie, H. X., de Boer, B., Koster, L. J. A. & Blom, P. W. M. Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene): Methanofullerene Bulk-Heterojunction Solar Cells. Advanced Functional Materials 16, 699–708, doi:10.1002/adfm.200500420 (2006).

    Google Scholar 

  20. Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nat Photon 6, 153–161 (2012).

    Google Scholar 

  21. Green, M. A. Solar cell fill factors: General graph and empirical expressions. Solid-State Electronics 24, 788–789, doi:http://dx.doi.org/10.1016/0038–1101(81)90062–9 (1981).

  22. Kirchartz, T., Pieters, B. E., Kirkpatrick, J., Rau, U. & Nelson, J. Recombination via tail states in polythiophene:fullerene solar cells. Physical Review B 83, 115209 (2011).

    Google Scholar 

  23. Street, R. A., Schoendorf, M., Roy, A. & Lee, J. H. Interface state recombination in organic solar cells. Physical Review B 81, 205307 (2010).

    Google Scholar 

  24. Mauer, R., Howard, I. A. & Laquai, F. Effect of Nongeminate Recombination on Fill Factor in Polythiophene/Methanofullerene Organic Solar Cells. The Journal of Physical Chemistry Letters 1, 3500–3505, doi:10.1021/jz101458y (2010).

    Google Scholar 

  25. Proctor, C. M., Kim, C., Neher, D. & Nguyen, T.-Q. Nongeminate Recombination and Charge Transport Limitations in Diketopyrrolopyrrole-Based Solution-Processed Small Molecule Solar Cells. Advanced Functional Materials 23, 3584–3594, doi:10.1002/adfm.201202643 (2013).

    Google Scholar 

  26. Qi, B. & Wang, J. Fill factor in organic solar cells. Physical Chemistry Chemical Physics 15, 8972–8982, doi:10.1039/c3cp51383a (2013).

    Google Scholar 

  27. Servaites, J. D., Yeganeh, S., Marks, T. J. & Ratner, M. A. Efficiency Enhancement in Organic Photovoltaic Cells: Consequences of Optimizing Series Resistance. Advanced Functional Materials 20, 97–104, doi:10.1002/adfm.200901107 (2010).

    Google Scholar 

  28. Gonzalez-Rabade, A., Morteani, A. C. & Friend, R. H. Correlation of Heterojunction Luminescence Quenching and Photocurrent in Polymer-Blend Photovoltaic Diodes. Advanced Materials 21, 3924- + , doi:10.1002/adma.200901114 (2009).

    Google Scholar 

  29. Baranovskii, S. D., Wiemer, M., Nenashev, A. V., Jansson, F. & Gebhardt, F. Calculating the Efficiency of Exciton Dissociation at the Interface between a Conjugated Polymer and an Electron Acceptor. Journal of Physical Chemistry Letters 3, 1214–1221, doi:10.1021/jz300123k (2012).

    Google Scholar 

  30. Onsager, L. Deviations from Ohm&apos;s Law in Weak Electrolytes. The Journal of Chemical Physics 2, 599–615, doi:doi:http://dx.doi.org/10.1063/1.1749541 (1934).

  31. Braun, C. L. Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. The Journal of Chemical Physics 80, 4157–4161, doi:doi:http://dx.doi.org/10.1063/1.447243 (1984).

  32. Deibel, C., Strobel, T. & Dyakonov, V. Origin of the Efficient Polaron-Pair Dissociation in Polymer-Fullerene Blends. Physical Review Letters 103, 036402 (2009).

    Google Scholar 

  33. Groves, C., Blakesley, J. C. & Greenham, N. C. Effect of Charge Trapping on Geminate Recombination and Polymer Solar Cell Performance. Nano Letters 10, 1063–1069, doi:10.1021/nl100080r (2010).

    Google Scholar 

  34. Groves, C. Suppression of geminate charge recombination in organic photovoltaic devices with a cascaded energy heterojunction. Energy & Environmental Science 6, 1546–1551, doi:10.1039/c3ee24455e (2013).

    Google Scholar 

  35. Groves, C. Developing understanding of organic photovoltaic devices: kinetic Monte Carlo models of geminate and non-geminate recombination, charge transport and charge extraction. Energy & Environmental Science 6, 3202–3217, doi:10.1039/c3ee41621f (2013).

    Google Scholar 

  36. Street, R. A., Cowan, S. & Heeger, A. J. Experimental test for geminate recombination applied to organic solar cells. Physical Review B 82, 121301 (2010).

    Google Scholar 

  37. Clarke, T. M. et al. Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells. Organic Electronics 13, 2639–2646, doi:10.1016/j.orgel.2012.07.037 (2012).

    Google Scholar 

  38. Shuttle, C. G., Hamilton, R., O’Regan, B. C., Nelson, J. & Durrant, J. R. Charge-density-based analysis of the current–voltage response of polythiophene/fullerene photovoltaic devices. Proceedings of the National Academy of Sciences 107, 16448–16452, doi:10.1073/pnas.1004363107 (2010).

    Google Scholar 

  39. Zhang, Y., Dang, X. D., Kim, C. & Nguyen, T. Q. Effect of Charge Recombination on the Fill Factor of Small Molecule Bulk Heterojunction Solar Cells. Advanced Energy Materials 1, 610–617, doi:10.1002/aenm.201100040 (2011).

    Google Scholar 

  40. Cowan, S. R., Banerji, N., Leong, W. L. & Heeger, A. J. Charge Formation, Recombination, and Sweep-Out Dynamics in Organic Solar Cells. Advanced Functional Materials 22, 1116–1128, doi:10.1002/adfm.201101632 (2012).

    Google Scholar 

  41. Kirchartz, T. & Nelson, J. Meaning of reaction orders in polymer: fullerene solar cells. Physical Review B 86, doi:10.1103/PhysRevB.86.165201 (2012).

    Google Scholar 

  42. Kirchartz, T., Pieters, B. E., Kirkpatrick, J., Rau, U. & Nelson, J. Recombination via tail states in polythiophene: fullerene solar cells. Physical Review B 83, 13, doi:10.1103/PhysRevB.83.115209 (2011).

    Google Scholar 

  43. Wetzelaer, G.-J. A. H., Van der Kaap, N. J., Koster, L. J. A. & Blom, P. W. M. Quantifying Bimolecular Recombination in Organic Solar Cells in Steady State. Advanced Energy Materials 3, 1130–1134, doi:10.1002/aenm.201300251 (2013).

    Google Scholar 

  44. Arumugam, S. et al. Charge transport in a two-dimensional molecular organic semiconductor. Journal of Materials Chemistry C 2, 34–39, doi:10.1039/c3tc31670j (2014).

    Google Scholar 

  45. Morfa, A. J., Nardes, A. M., Shaheen, S. E., Kopidakis, N. & van de Lagemaat, J. Time-of-Flight Studies of Electron-Collection Kinetics in Polymer:Fullerene Bulk-Heterojunction Solar Cells. Advanced Functional Materials 21, 2580–2586, doi:10.1002/adfm.201100432 (2011).

    Google Scholar 

  46. Pivrikas, A., Neugebauer, H. & Sariciftci, N. S. Charge Carrier Lifetime and Recombination in Bulk Heterojunction Solar Cells. Ieee Journal of Selected Topics in Quantum Electronics 16, 1746–1758, doi:10.1109/jstqe.2010.2044978 (2010).

    Google Scholar 

  47. Pivrikas, A., Sariciftci, N. S., Juska, G. & Osterbacka, R. A review of charge transport and recombination in polymer/fullerene organic solar cells. Progress in Photovoltaics 15, 677–696, doi:10.1002/pip.791 (2007).

    Google Scholar 

  48. Clarke, T. M., Jamieson, F. C. & Durrant, J. R. Transient Absorption Studies of Bimolecular Recombination Dynamics in Polythiophene/Fullerene Blend Films. Journal of Physical Chemistry C 113, 20934–20941, doi:10.1021/jp909442 s (2009).

    Google Scholar 

  49. Clarke, T. M. et al. Non-Langevin bimolecular recombination in a silole-based polymer:PCBM solar cell measured by time-resolved charge extraction and resistance-dependent time-of-flight techniques. Energy & Environmental Science 5, 5241–5245, doi:10.1039/c1ee02434e (2012).

    Google Scholar 

  50. Clarke, T. M. et al. Significantly Reduced Bimolecular Recombination in a Novel Silole-Based Polymer: Fullerene Blend. Advanced Energy Materials 1, 1062–1067, doi:10.1002/aenm.201100390 (2011).

    Google Scholar 

  51. Gupta, D., Vidhyadhiraja, N. S. & Narayan, K. S. Transport of Photogenerated Charge Carriers in Polymer Semiconductors. Proceedings of the Ieee 97, 1558–1569, doi:10.1109/jproc.2009.2019228 (2009).

    Google Scholar 

  52. Hoffmann, S. T. et al. How Do Disorder, Reorganization, and Localization Influence the Hole Mobility in Conjugated Copolymers? Journal of the American Chemical Society 135, 1772–1782, doi:10.1021/ja308820j (2013).

    Google Scholar 

  53. Mauer, R., Howard, I. A. & Laquai, F. Effect of Nongeminate Recombination on Fill Factor in Polythiophene/Methanofullerene Organic Solar Cells. Journal of Physical Chemistry Letters 1, 3500–3505, doi:10.1021/jz101458y (2010).

    Google Scholar 

  54. Mauer, R., Kastler, M. & Laquai, F. The Impact of Polymer Regioregularity on Charge Transport and Efficiency of P3HT:PCBM Photovoltaic Devices. Advanced Functional Materials 20, 2085–2092, doi:10.1002/adfm.201000320 (2010).

    Google Scholar 

  55. Howard, I. A., Mauer, R., Meister, M. & Laquai, F. Effect of Morphology on Ultrafast Free Carrier Generation in Polythiophene:Fullerene Organic Solar Cells. Journal of the American Chemical Society 132, 14866–14876, doi:10.1021/ja105260d (2010).

    Google Scholar 

  56. Marsh, R. A., Hodgkiss, J. M. & Friend, R. H. Direct Measurement of Electric Field-Assisted Charge Separation in Polymer: Fullerene Photovoltaic Diodes. Advanced Materials 22, 3672- + , doi:10.1002/adma.201001010 (2010).

    Google Scholar 

  57. Finlayson, C. E. et al. Electronic Transport Properties of Ensembles of Perylene-Substituted Poly-isocyanopeptide Arrays. Advanced Functional Materials 18, 3947–3955, doi:10.1002/adfm.200800943 (2008).

    Google Scholar 

  58. Zang, L., Che, Y. & Moore, J. S. One-Dimensional Self-Assembly of Planar π-Conjugated Molecules: Adaptable Building Blocks for Organic Nanodevices. Accounts of Chemical Research 41, 1596–1608, doi:10.1021/ar800030w (2008).

    Google Scholar 

  59. Dabirian, R. et al. The Relationship between Nanoscale Architecture and Charge Transport in Conjugated Nanocrystals Bridged by Multichromophoric Polymers. Journal of the American Chemical Society 131, 7055–7063, doi:10.1021/ja809731e (2009).

    Google Scholar 

  60. Balakrishnan, K. et al. Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules: Morphology Control. Journal of the American Chemical Society 128, 7390–7398, doi:10.1021/ja061810z (2006).

    Google Scholar 

  61. Sohn, Y. & Stuckless, J. T. Characteristics of photoexcitations and interfacial energy levels of regioregular poly(3-hexythiophene −2,5-diyl) on gold. Chemphyschem: a European journal of chemical physics and physical chemistry 8, 1937–1942, doi:10.1002/cphc.200700348 (2007).

    Google Scholar 

  62. Tautz, R. et al. Structural correlations in the generation of polaron pairs in low-bandgap polymers for photovoltaics. Nature Communications 3, doi:10.1038/ncomms1967 (2012).

    Google Scholar 

  63. Proctor, C. M., Kim, C., Neher, D. & Thuc-Quyen, N. Nongeminate Recombination and Charge Transport Limitations in Diketopyrrolopyrrole-Based Solution-Processed Small Molecule Solar Cells. Advanced Functional Materials 23, 3584–3594, doi:10.1002/adfm.201202643 (2013).

    Google Scholar 

  64. Zhang, Y., Liu, J. & Thuc-Quyen, N. Photoresponse of Donor/Acceptor Blends in Organic Transistors: A Tool for Understanding Field-Assisted Charge Separation in Small Molecule Bulk Heterojunction Solar Cells. Acs Applied Materials & Interfaces 5, 2347–2353, doi:10.1021/am302833j (2013).

    Google Scholar 

  65. von Hauff, E., Dyakonov, V. & Parisi, J. Study of field effect mobility in PCBM films and P3HT:PCBM blends. Solar Energy Materials and Solar Cells 87, 149–156, doi:http://dx.doi.org/10.1016/j.solmat.2004.06.014 (2005).

  66. Lombardo, C., Danielson, E., Ooi, Z. E. & Dodabalapur, A. Lateral mobility measurements in organic bulk heterojunctions: comparison of field-effect and space charge mobilities. Journal of Photonics for Energy 2, doi:10.1117/1.jpe.2.021007 (2012).

    Google Scholar 

  67. Labram, J. G., Kirkpatrick, J., Bradley, D. D. C. & Anthopoulos, T. D. Impact of Fullerene Molecular Weight on P3HT:PCBM Microstructure Studied Using Organic Thin-Film Transistors. Advanced Energy Materials 1, 1176–1183, doi:10.1002/aenm.201100413 (2011).

    Google Scholar 

  68. Kumar, P., Jain, S. C., Kumar, V., Chand, S. & Tandon, R. P. Effect of illumination on the space charge limited current in organic bulk heterojunction diodes. Applied Physics a-Materials Science & Processing 94, 281–286, doi:10.1007/s00339–008-4771–0 (2009).

    Google Scholar 

  69. Kokil, A., Yang, K. & Kumar, J. Techniques for characterization of charge carrier mobility in organic semiconductors. Journal of Polymer Science Part B-Polymer Physics 50, 1130–1144, doi:10.1002/polb.23103 (2012).

    Google Scholar 

  70. Falzon, M.-F., Wienk, M. M. & Janssen, R. A. J. Designing Acceptor Polymers for Organic Photovoltaic Devices. Journal of Physical Chemistry C 115, 3178–3187, doi:10.1021/jp110990w (2011).

    Google Scholar 

  71. Deng, Y. et al. Dithienocarbazole and Isoindigo based Amorphous Low Bandgap Conjugated Polymers for Efficient Polymer Solar Cells. Adv Mater, doi:10.1002/adma.201303586 (2013).

    Google Scholar 

  72. Dou, L. et al. Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. J Am Chem Soc 134, 10071–10079, doi:10.1021/ja301460 s (2012).

    Google Scholar 

  73. Lin, Y. et al. Small-Molecule Solar Cells with Fill Factors up to 0.75 via a Layer-by-Layer Solution Process. Advanced Energy Materials, n/a-n/a, doi:10.1002/aenm.201300626 (2013).

    Google Scholar 

  74. Min, J. et al. Alkyl Chain Engineering of Solution-Processable Star-Shaped Molecules for High-Performance Organic Solar Cells. Advanced Energy Materials, n/a-n/a, doi:10.1002/aenm.201301234 (2013).

    Google Scholar 

  75. Seri, M. et al. Fine Structural Tuning of Cyanated Dithieno[3,2-b:2′,3′-d]silole–Oligothiophene Copolymers: Synthesis, Characterization, and Photovoltaic Response. Macromolecules 46, 6419–6430, doi:10.1021/ma4011186 (2013).

    Google Scholar 

  76. Massip, S. et al. Influence of Side Chains on Geminate and Bimolecular Recombination in Organic Solar Cells. Journal of Physical Chemistry C 115, 25046–25055, doi:10.1021/jp2070584 (2011).

    Google Scholar 

  77. Carsten, B. et al. Examining the Effect of the Dipole Moment on Charge Separation in Donor-Acceptor Polymers for Organic Photovoltaic Applications. Journal of the American Chemical Society 133, 20468–20475, doi:10.1021/ja208642b (2011).

    Google Scholar 

  78. Azimi, H., Senes, A., Scharber, M. C., Hingerl, K. & Brabec, C. J. Charge Transport and Recombination in Low-Bandgap Bulk Heterojunction Solar Cell using Bis-adduct Fullerene. Advanced Energy Materials 1, 1162–1168, doi:10.1002/aenm.201100331 (2011).

    Google Scholar 

  79. Wetzelaer, G.-J. A. H. et al. Asymmetric electron and hole transport in a high-mobility n-type conjugated polymer. Phys Rev B (2012).

    Google Scholar 

  80. Bartelt, J. A. et al. The Importance of Fullerene Percolation in the Mixed Regions of Polymer-Fullerene Bulk Heterojunction Solar Cells. Advanced Energy Materials 3, 364–374, doi:10.1002/aenm.201200637 (2013).

    Google Scholar 

  81. Zhou, N. et al. Morphology-Performance Relationships in High-Efficiency All-Polymer Solar Cells. Advanced Energy Materials 4, n/a-n/a, doi:10.1002/aenm.201300785 (2014).

    Google Scholar 

  82. Faist, M. A. et al. Understanding the Reduced Efficiencies of Organic Solar Cells Employing Fullerene Multiadducts as Acceptors. Advanced Energy Materials 3, 744–752, doi:10.1002/aenm.201200673 (2013).

    Google Scholar 

  83. O’Regan, B. C. et al. Measuring Charge Transport from Transient Photovoltage Rise Times. A New Tool To Investigate Electron Transport in Nanoparticle Films. The Journal of Physical Chemistry B 110, 17155–17160, doi:10.1021/jp062761f (2006).

    Google Scholar 

  84. Hamilton, R. et al. Recombination in Annealed and Nonannealed Polythiophene/Fullerene Solar Cells: Transient Photovoltage Studies versus Numerical Modeling. The Journal of Physical Chemistry Letters 1, 1432–1436, doi:10.1021/jz1001506 (2010).

    Google Scholar 

  85. Li, Z., Gao, F., Greenham, N. C. & McNeill, C. R. Comparison of the Operation of Polymer/Fullerene, Polymer/Polymer, and Polymer/Nanocrystal Solar Cells: A Transient Photocurrent and Photovoltage Study. Advanced Functional Materials 21, 1419–1431, doi:10.1002/adfm.201002154 (2011).

    Google Scholar 

  86. Shuttle, C. G. et al. Experimental determination of the rate law for charge carrier decay in a polythiophene: Fullerene solar cell. Applied Physics Letters 92, -, doi: http://dx.doi.org/10.1063/1.2891871 (2008).

  87. Maurano, A. et al. Recombination Dynamics as a Key Determinant of Open Circuit Voltage in Organic Bulk Heterojunction Solar Cells: A Comparison of Four Different Donor Polymers. Advanced Materials 22, 4987-+, doi:10.1002/adma.201002360 (2010).

    Google Scholar 

  88. Armin, A. et al. Doping-Induced Screening of the Built-in-Field in Organic Solar Cells: Effect on Charge Transport and Recombination. Advanced Energy Materials 3, 321–327, doi:10.1002/aenm.201200581 (2013).

    Google Scholar 

  89. Armin, A., Velusamy, M., Burn, P. L., Meredith, P. & Pivrikas, A. Injected charge extraction by linearly increasing voltage for bimolecular recombination studies in organic solar cells. Applied Physics Letters 101, doi:10.1063/1.4747330 (2012).

    Google Scholar 

  90. Bange, S., Schubert, M. & Neher, D. Charge mobility determination by current extraction under linear increasing voltages: Case of nonequilibrium charges and field-dependent mobilities. Physical Review B 81, doi:10.1103/PhysRevB.81.035209 (2010).

    Google Scholar 

  91. Baumann, A., Lorrmann, J., Rauh, D., Deibel, C. & Dyakonov, V. A New Approach for Probing the Mobility and Lifetime of Photogenerated Charge Carriers in Organic Solar Cells Under Real Operating Conditions. Advanced Materials 24, 4381–4386, doi:10.1002/adma.201200874 (2012).

    Google Scholar 

  92. Baumann, A. et al. Influence of Phase Segregation on Recombination Dynamics in Organic Bulk-Heterojunction Solar Cells. Advanced Functional Materials 21, 1687–1692, doi:10.1002/adfm.201002358 (2011).

    Google Scholar 

  93. Chellappan, V., Ng, G. M., Tan, M. J., Goh, W.-P. & Zhu, F. Imbalanced charge mobility in oxygen treated polythiophene/fullerene based bulk heterojunction solar cells. Applied Physics Letters 95, doi:10.1063/1.3279135 (2009).

    Google Scholar 

  94. Juska, G., Nekrasas, N., Valentinavicius, V., Meredith, P. & Pivrikas, A. Extraction of photogenerated charge carriers by linearly increasing voltage in the case of Langevin recombination. Physical Review B 84, doi:10.1103/PhysRevB.84.155202 (2011).

    Google Scholar 

  95. van der Hofstad, T. G. J. et al. Carrier Recombination in Polymer Fullerene Solar Cells Probed by Reversible Exchange of Charge between the Active Layer and Electrodes Induced by a Linearly Varying Voltage. Journal of Physical Chemistry C 117, 3210–3220, doi:10.1021/jp306794j (2013).

    Google Scholar 

  96. Vijila, C. et al. Relation between charge carrier mobility and lifetime in organic photovoltaics. Journal of Applied Physics 114, doi:10.1063/1.4829456 (2013).

    Google Scholar 

  97. Proctor, C. M., Kuik, M. & Thuc-Quyen, N. Charge carrier recombination in organic solar cells. Progress in Polymer Science 38, 1941–1960, doi:10.1016/j.progpolymsci.2013.08.008 (2013).

    Google Scholar 

  98. Dicker, G., de Haas, M., Siebbeles, L. & Warman, J. Electrodeless time-resolved microwave conductivity study of charge-carrier photogeneration in regioregular poly(3-hexylthiophene) thin films. Physical Review B 70, doi:10.1103/PhysRevB.70.045203 (2004).

    Google Scholar 

  99. Savenije, T. J., Ferguson, A. J., Kopidakis, N. & Rumbles, G. Revealing the Dynamics of Charge Carriers in Polymer:Fullerene Blends Using Photoinduced Time-Resolved Microwave Conductivity. Journal of Physical Chemistry C 117, 24085–24103, doi:10.1021/jp406706u (2013).

    Google Scholar 

  100. Saeki, A., Fukumatsu, T. & Seki, S. Intramolecular Charge Carrier Mobility in Fluorene-Thiophene Copolymer Films Studied by Microwave Conductivity. Macromolecules 44, 3416–3424, doi:10.1021/ma2004844 (2011).

    Google Scholar 

  101. Saeki, A., Tsuji, M. & Seki, S. Direct Evaluation of Intrinsic Optoelectronic Performance of Organic Photovoltaic Cells with Minimizing Impurity and Degradation Effects. Advanced Energy Materials 1, 661–669, doi:10.1002/aenm.201100143 (2011).

    Google Scholar 

  102. Saeki, A. et al. A versatile approach to organic photovoltaics evaluation using white light pulse and microwave conductivity. J Am Chem Soc 134, 19035–19042, doi:10.1021/ja309524f (2012).

    Google Scholar 

  103. Rance, W. L. et al. Photoinduced Carrier Generation and Decay Dynamics in Intercalated and Non-intercalated Polymer:Fullerene Bulk Heterojunctions. ACS Nano 5, 5635–5646, doi:10.1021/nn201251v (2011).

    Google Scholar 

  104. Ferguson, A. J., Kopidakis, N., Shaheen, S. E. & Rumbles, G. Dark Carriers, Trapping, and Activation Control of Carrier Recombination in Neat P3HT and P3HT:PCBM Blends. The Journal of Physical Chemistry C 115, 23134–23148, doi:10.1021/jp208014v (2011).

    Google Scholar 

  105. Murthy, D. H. K., Gao, M., Vermeulen, M. J. W., Siebbeles, L. D. A. & Savenije, T. J. Mechanism of Mobile Charge Carrier Generation in Blends of Conjugated Polymers and Fullerenes: Significance of Charge Delocalization and Excess Free Energy. The Journal of Physical Chemistry C 116, 9214–9220, doi:10.1021/jp3007014 (2012).

    Google Scholar 

  106. Grzegorczyk, W. J. et al. Temperature-Independent Charge Carrier Photogeneration in P3HT−PCBM Blends with Different Morphology. The Journal of Physical Chemistry C 114, 5182–5186, doi:10.1021/jp9119364 (2010).

    Google Scholar 

  107. Lenes, M. et al. Electron Trapping in Higher Adduct Fullerene-Based Solar Cells. Advanced Functional Materials 19, 3002–3007, doi:10.1002/adfm.200900459 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanjia Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, N., Facchetti, A. (2014). Charge Transport and Recombination in Organic Solar Cells (OSCs). In: Huang, H., Huang, J. (eds) Organic and Hybrid Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-10855-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10855-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10854-4

  • Online ISBN: 978-3-319-10855-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics