Skip to main content

Colloidal Inorganic–Organic Hybrid Solar Cells

  • Chapter
  • First Online:
Organic and Hybrid Solar Cells

Abstract

Over the last two decades, the need for cheap, clean, and renewable energy has been the driving force behind the field of solution-processable organic photovoltaics (OPV). In contrast to their inorganic counterparts, typical organic semiconductors possess a low relative dielectric constant (~ 3–5), resulting in the formation of a Frenkel exciton upon photoexcitation, as opposed to free charge carriers. Thus, a donor–acceptor heterojunction to separate the exciton is necessary. In 1992, ultrafast electron transfer from conducting polymers to fullerene molecules was reported by Saricifti et al. The subsequent synthesis of a soluble fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) by Hummelen et al., opened the pathway to the first solution-processable organic solar cells (OSCs) with appreciable efficiency. Almost two decades later, PCBM is still the most widely used acceptor molecule and has been a crucial factor for the rapid progress of the OSC field.

D. M. Balazs and M. J. Speirs contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 1992, 258, 1474–1476.

    Google Scholar 

  2. Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L. Preparation and Characterization of Fulleroid and Methanofullerene Derivatives. Journal of Organic Chemistry 1995, 60, 532–538.

    Google Scholar 

  3. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, 1789–1791.

    Google Scholar 

  4. Kittel, C. Introduction to solid state physics; Wiley: Hoboken, 2005.

    Google Scholar 

  5. Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells. Chem. Rev. 2010, 110, 6873–6890.

    Google Scholar 

  6. Grätzel, M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2003, 4, 145–153.

    Google Scholar 

  7. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chemical Reviews 2010, 110, 6595–6663.

    Google Scholar 

  8. Snaith, H. J. Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The Journal of Physical Chemistry Letters 2013, 4, 3623–3630.

    Google Scholar 

  9. Loi, M. A.; Hummelen, J. C. Hybrid solar cells: Perovskites under the Sun. Nature Materials 2013, 12, 1087–1089.

    Google Scholar 

  10. Hachmann, J.; Olivares-Amaya, R.; Jinich, A.; Appleton, A. L.; Blood-Forsythe, M. A.; Seress, L. R.; Román-Salgado, C.; Trepte, K.; Atahan-Evrenk, S.; Er, S.; Shrestha, S.; Mondal, R.; Sokolov, A.; Bao, Z.; Aspuru-Guzik, A. Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry—the Harvard Clean Energy Project. Energy & Environmental Science 2014, 7, 698.

    Google Scholar 

  11. Soreni-Hararl, M.; Yaacobi-Gross, N.; Steiner, D.; Aharoni, A.; Banin, U.; Millo, O.; Tessler, N. Tuning energetic levels in nanocrystal quantum dots through surface manipulations. Nano Letters 2008, 8, 678–684.

    Google Scholar 

  12. Yaacobi-Gross, N.; Soreni-Harari, M.; Zimin, M.; Kababya, S.; Schmidt, A.; Tessler, N. Molecular control of quantum-dot internal electric field and its application to CdSe-based solar cells. Nature Materials 2011, 10, 974–979.

    Google Scholar 

  13. Nozik, A. J. Quantum dot solar cells. Physica E: Low-dimensional Systems and Nanostructures 2002, 14, 115–120.

    Google Scholar 

  14. Shockley, W.; Queisser, H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics 1961, 32, 510.

    Google Scholar 

  15. Nozik, A. J. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annual Review of Physical Chemistry 2001, 52, 193–231.

    Google Scholar 

  16. Schaller, R. D.; Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Physical Review Letters 2004, 92, 186601.

    Google Scholar 

  17. Nair, G.; Chang, L.; Geyer, S. M.; Bawendi, M. G. Perspective on the Prospects of a Carrier Multiplication Nanocrystal Solar Cell. Nano Letters 2011, 11, 2145–2151.

    Google Scholar 

  18. Midgett, A. G.; Luther, J. M.; Stewart, J. T.; Smith, D. K.; Padilha, L. A.; Klimov, V. I.; Nozik, A. J.; Beard, M. C. Size and Composition Dependent Multiple Exciton Generation Efficiency in PbS, PbSe, and PbSxSe1–xAlloyed Quantum Dots. Nano Letters 2013, 13, 3078–3085.

    Google Scholar 

  19. Padilha, L. A.; Stewart, J. T.; Sandberg, R. L.; Bae, W. K.; Koh, W.; Pietryga, J. M.; Klimov, V. I. Aspect Ratio Dependence of Auger Recombination and Carrier Multiplication in PbSe Nanorods. Nano Letters 2013, 13, 1092–1099.

    Google Scholar 

  20. Vörös, M.; Rocca, D.; Galli, G.; Zimanyi, G.; Gali, A. Increasing impact ionization rates in Si nanoparticles through surface engineering: A density functional study. Physical Review B 2013, 87, 155–402.

    Google Scholar 

  21. Mikhnenko, O. V.; Azimi, H.; Scharber, M.; Morana, M.; Blom, P. W. M.; Loi, M. A. Exciton diffusion length in narrow bandgap polymers. Energy & Environmental Science 2012, 5, 6960.

    Google Scholar 

  22. Greenham, N.; Peng, X.; Alivisatos, A. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Physical Review B 1996, 54, 17628–17637.

    Google Scholar 

  23. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425–2427.

    Google Scholar 

  24. Jarzab, D.; Szendrei, K.; Yarema, M.; Pichler, S.; Heiss, W.; Loi, M. A. Charge-Separation Dynamics in Inorganic-Organic Ternary Blends for Efficient Infrared Photodiodes. Advanced Functional Materials 2011, 21, 1988–1992.

    Google Scholar 

  25. Gocalin´ska, A.; Saba, M.; Quochi, F.; Marceddu, M.; Szendrei, K.; Gao, J.; Loi, M. A.; Yarema, M.; Seyrkammer, R.; Heiss, W.; Mura, A.; Bongiovanni, G. Size-Dependent Electron Transfer from Colloidal PbS Nanocrystals to Fullerene. The Journal of Physical Chemistry Letters 2010, 1, 1149–1154.

    Google Scholar 

  26. Chang, T. F.; Musikhin, S.; Bakueva, L.; Levina, L.; Hines, M. A.; Cyr, P. W.; Sargent, E. H. Efficient excitation transfer from polymer to nanocrystals. Applied Physics Letters 2004, 84, 4295.

    Google Scholar 

  27. Liao, H.; Chen, S.; Liu, D. In-Situ Growing CdS Single-Crystal Nanorods via P3HT Polymer as a Soft Template for Enhancing Photovoltaic Performance. Macromolecules 2009, 42, 6558–6563.

    Google Scholar 

  28. Rath, T.; Edler, M.; Haas, W.; Fischereder, A.; Moscher, S.; Schenk, A.; Trattnig, R.; Sezen, M.; Mauthner, G.; Pein, A.; Meischler, D.; Bartl, K.; Saf, R.; Bansal, N.; Haque, S. A.; Hofer, F.; List, E. J. W; Trimmel, G. A Direct Route Towards Polymer/Copper Indium Sulfide Nanocomposite Solar Cells. Advanced Energy Materials 2011, 1, 1046–1050.

    Google Scholar 

  29. Ren, S.; Chang, L.; Lim, S.; Zhao, J. Inorganic–Organic Hybrid Solar Cell: Bridging Quantum Dots to Conjugated Polymer Nanowires. Nano Letters 2011, 11, 3998–4002.

    Google Scholar 

  30. Sun, B.; Marx, E.; Greenham, N. C. Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers. Nano Letters 2003, 3, 961–963.

    Google Scholar 

  31. Dayal, S.; Reese, M. O.; Ferguson, A. J.; Ginley, D. S.; Rumbles, G; Kopidakis, N. The Effect of Nanoparticle Shape on the Photocarrier Dynamics and Photovoltaic Device Performance of Poly(3-hexylthiophene):CdSe Nanoparticle Bulk Heterojunction Solar Cells. Advanced Functional Materials 2010, 20, 2629–2635.

    Google Scholar 

  32. Zhou, R.; Stalder, R.; Xie, D.; Cao, W.; Zheng, Y.; Yang, Y.; Plaisant, M.; Holloway, P. H.; Schanze, K. S.; Reynolds, J. R; Xue, J. Enhancing the Efficiency of Solution-Processed Polymer:Colloidal Nanocrystal Hybrid Photovoltaic Cells Using Ethanedithiol Treatment. ACS Nano 2013, 7, 4846–4854.

    Google Scholar 

  33. Jeltsch, K. F.; Schädel, M.; Bonekamp, J.; Niyamakom, P.; Rauscher, F.; Lademann, H. W. A.; Dumsch, I.; Allard, S.; Scherf, U; Meerholz, K. Efficiency Enhanced Hybrid Solar Cells Using a Blend of Quantum Dots and Nanorods. Advanced Functional Materials 2012, 22, 397–404.

    Google Scholar 

  34. Sun, B.; Greenham, N. C. Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers. Physical Chemistry Chemical Physics 2006, 8, 3557–3560.

    Google Scholar 

  35. Liu, Z.; Sun, Y.; Yuan, J.; Wei, H.; Huang, X.; Han, L.; Wang, W.; Wang, H.; Ma, W. High-Efficiency Hybrid Solar Cells Based on Polymer/PbSxSe1-xNanocrystals Benefiting from Vertical Phase Segregation. Adv Mater 2013, 25, 5772–5778.

    Google Scholar 

  36. Dowland, S.; Lutz, T.; Ward, A.; King, S. P.; Sudlow, A.; Hill, M. S.; Molloy, K. C.; Haque, S. A. Direct Growth of Metal Sulfide Nanoparticle Networks in Solid-State Polymer Films for Hybrid Inorganic-Organic Solar Cells. Adv Mater 2011, 23, 2739–2744.

    Google Scholar 

  37. Jiu, T.; Reiss, P.; Guillerez, S.; Bettignies, R. d.; Bailly, S; Chandezon, F. Hybrid Solar Cells Based on Blends of CdSe Nanorods and Poly(3-alkylthiophene) Nanofibers. IEEE Journal of Selected Topics in Quantum Electronics 2010, 16, 1619–1626.

    Google Scholar 

  38. Yang, J.; Tang, A.; Zhou, R.; Xue, J. Effects of nanocrystal size and device aging on performance of hybrid poly(3-hexylthiophene):CdSe nanocrystal solar cells. Solar Energy Mater. Solar Cells 2011, 95, 476–482.

    Google Scholar 

  39. Sun, B.; Snaith, H. J.; Dhoot, A. S.; Westenhoff, S.; Greenham, N. C. Vertically segregated hybrid blends for photovoltaic devices with improved efficiency. J. Appl. Phys. 2005, 97, 014914.

    Google Scholar 

  40. Li, W.; Furlan, A.; Hendriks, K. H.; Wienk, M. M.; Janssen, R. A. J. Efficient Tandem and Triple-Junction Polymer Solar Cells. J. Am. Chem. Soc. 2013, 135, 5529–5532.

    Google Scholar 

  41. McDonald, S. A.; Cyr, P. W.; Levina, L.; Sargent, E. H. Photoconductivity from PbS-nanocrystal/semiconducting polymer composites for solution-processible, quantum-size tunable infrared photodetectors. Applied Physics Letters 2004, 85, 2089.

    Google Scholar 

  42. McDonald, S. A.; Konstantatos, G.; Zhang, S.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials 2005, 4, 138–142.

    Google Scholar 

  43. Cui, D.; Xu, J.; Zhu, T.; Paradee, G.; Ashok, S.; Gerhold, M. Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells. Applied Physics Letters 2006, 88, 183111.

    Google Scholar 

  44. Dissanayake, D. M. N. M.; Hatton, R. A.; Lutz, T.; Giusca, C. E.; Curry, R. J.; Silva, S. R. P. A PbS nanocrystal-C[sub 60] photovoltaic device for infrared light harvesting. Applied Physics Letters 2007, 91, 133506.

    Google Scholar 

  45. Tsang, S. W.; Fu, H.; Wang, R.; Lu, J.; Yu, K.; Tao, Y. Highly efficient cross-linked PbS nanocrystal/C[sub 60] hybrid heterojunction photovoltaic cells. Applied Physics Letters 2009, 95, 183505.

    Google Scholar 

  46. Tsang, S.; Fu, H.; Ouyang, J.; Zhang, Y.; Yu, K.; Lu, J.; Tao, Y. Self-organized phase segregation between inorganic nanocrystals and PC[sub 61]BM for hybrid high-efficiency bulk heterojunction photovoltaic cells. Applied Physics Letters 2010, 96, 243104.

    Google Scholar 

  47. Talapin, D. V.; Lee, J.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev. 2010, 110, 389–458.

    Google Scholar 

  48. Vanmaekelbergh, D.; Liljeroth, P. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals. Chem. Soc. Rev. 2005, 34, 299–312.

    Google Scholar 

  49. Remacle, F.; Levine, R. D. Quantum Dots as Chemical Building Blocks: Elementary Theoretical Considerations. ChemPhysChem 2001, 2, 20.

    Google Scholar 

  50. Jiang, C.; Green, M. A. Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J. Appl. Phys. 2006, 99, 114902.

    Google Scholar 

  51. Bisri, S. Z.; Piliego, C.; Gao, J.; Loi, M. A. Outlook and Emerging Semiconducting Materials for Ambipolar Transistors. Adv Mater 2014, 26, 1176–1199.

    Google Scholar 

  52. Collier, C. P.; Saykally, R. J.; Shiang, J. J.; Henrichs, S. E.; Heath, J. R. Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition. Science 1997, 277, 1978.

    Google Scholar 

  53. Mott, N. F. Conduction in non-crystalline materials; Oxford: Clarendon Press; 1993, pp 150.

    Google Scholar 

  54. Beverly, K. C.; Sampaio, J. F.; Heath, J. R. Effects of Size Dispersion Disorder on the Charge Transport in Self-Assembled 2-D Ag Nanoparticle Arrays. The Journal of Physical Chemistry B 2002, 106, 2131–2135.

    Google Scholar 

  55. Yu, D.; Wang, C.; Guyot-Sionnest, P. n-Type conducting CdSe nanocrystal solids. Science 2003, 300, 1277–1280.

    Google Scholar 

  56. Guyot-Sionnest, P. Electrical Transport in Colloidal Quantum Dot Films. Journal of Physical Chemistry Letters 2012, 3, 1169–1175.

    Google Scholar 

  57. Szendrei, K.; Speirs, M.; Gomulya, W.; Jarzab, D.; Manca, M.; Mikhnenko, O. V.; Yarema, M.; Kooi, B. J.; Heiss, W.; Loi, M. A. Exploring the Origin of the Temperature-Dependent Behavior of PbS Nanocrystal Thin Films and Solar Cells. Advanced Functional Materials 2012, 22, 1598–1605.

    Google Scholar 

  58. Lee, J.; Kovalenko, M. V.; Huang, J.; Chung, D. S.; Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nature Nanotechnology 2011, 6, 348–352.

    Google Scholar 

  59. Choi, J.; Fafarman, A. T.; Oh, S. J.; Ko, D.; Kim, D. K.; Diroll, B. T.; Muramoto, S.; Gillen, J. G.; Murray, C. B.; Kagan, C. R. Bandlike Transport in Strongly Coupled and Doped Quantum Dot Solids: A Route to High-Performance Thin-Film Electronics. Nano Letters 2012, 12, 2631–2638.

    Google Scholar 

  60. Johnston, K. W.; Pattantyus-Abraham, A. G.; Clifford, J. P.; Myrskog, S. H.; MacNeil, D. D.; Levina, L.; Sargent, E. H. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Applied Physics Letters 2008, 92, 151115.

    Google Scholar 

  61. Kim, D.; Kim, D.; Lee, J.; Grossman, J. C. Impact of Stoichiometry on the Electronic Structure of PbS Quantum Dots. Phys. Rev. Lett. 2013, 110, 1986802.

    Google Scholar 

  62. Moreels, I.; Justo, Y.; De Geyter, B.; Haustraete, K.; Martins, J. C.; Hens, Z. Size-Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study. ACS Nano 2011, 5, 2004–2012.

    Google Scholar 

  63. Luther, J. M.; Law, M.; Song, Q.; Perkins, C. L.; Beard, M. C.; Nozik, A. J. Structural, optical and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. ACSNano 2008, 2, 271–280.

    Google Scholar 

  64. Law, M.; Luther, J. M.; Song, O.; Hughes, B. K.; Perkins, C. L.; Nozik, A. J. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. J. Am. Chem. Soc. 2008, 130, 5974–5985.

    Google Scholar 

  65. Zarghami, M. H.; Liu, Y.; Gibbs, M.; Gebremichael, E.; Webster, C.; Law, M. p-Type PbSe and PbS Quantum Dot Solids Prepared with Short-Chain Acids and Diacids. ACSNano 2010, 4, 2475–2485.

    Google Scholar 

  66. Talapin, D. V.; Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 2005, 310, 86–89.

    Google Scholar 

  67. Choi, J. J.; Luria, J.; Hyun, B.; Bartnik, A. C.; Sun, L.; Lim, Y.; Marohn, J. A.; Wise, F. W; Hanrath, T. Photogenerated Exciton Dissociation in Highly Coupled Lead Salt Nanocrystal Assemblies. Nano Letters 2010, 10, 1805–1811.

    Google Scholar 

  68. Liu, Y.; Gibbs, M.; Puthussery, J.; Gaik, S.; Ihly, R.; Hillhouse, H. W; Law, M. Dependence of Carrier Mobility on Nanocrystal Size and Ligand Length in PbSe Nanocrystal Solids. Nano Letters 2010, 10, 1960–1969.

    Google Scholar 

  69. Barkhouse, D. A. R.; Pattantyus-Abraham, A. G.; Levina, L.; Sargent, E. H. Thiols Passivate Recombination Centers in Colloidal Quantum Dots Leading to Enhanced Photovoltaic Device Efficiency. ACSNano 2008, 2, 2356–2362.

    Google Scholar 

  70. Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. O.; Ellingson, R. J.; Nozik, A. J. Schottky Solar Cells Based on Colloidal Nanocrystal Films. Nano Letters 2008, 8, 3488–3492.

    Google Scholar 

  71. Simon M. Sze; Ng, K. K. Physics of semiconductor devices; Wiley-Interscience: Hoboken, 2007, pp 815.

    Google Scholar 

  72. Szendrei, K.; Gomulya, W.; Yarema, M.; Heiss, W.; Loi, M. A. PbS nanocrystal solar cells with high efficiency and fill factor. Applied Physics Letters 2010, 97, 203501.

    Google Scholar 

  73. Bisri, S. Z.; Piliego, C.; Yarema, M.; Heiss, W.; Loi, M. A. Low Driving Voltage and High Mobility Ambipolar Field-Effect Transistors with PbS Colloidal Nanocrystals. Adv Mater 2013, 25, 4309–4314.

    Google Scholar 

  74. Ma, W.; Swisher, S. L.; Ewers, T.; Engel, J.; Ferry, V. E.; Atwater, H. A.; Alivisatos, A. P. Photovoltaic Performance of Ultrasmall PbSe Quantum Dots. ACSNano 2011, 5, 8140–8147.

    Google Scholar 

  75. Ma, W.; Luther, J. M.; Zheng, H.; Wu, Y.; Alivisatos, A. P. Photovoltaic Devices Employing Ternary PbSxSe1-xNanocrystals. Nano Letters 2009, 9, 1699–1703.

    Google Scholar 

  76. Wang, J.; Mora-Seró, I.; Pan, Z.; Zhao, K.; Zhang, H.; Feng, Y.; Yang, G.; Zhong, X.; Bisquert, J. Core/Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells. J. Am. Chem. Soc. 2013, 135, 15913–15922.

    Google Scholar 

  77. Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H.; Gao, J.; Nozik, A. J.; Beard, M. C. Peak External Photocurrent Quantum Efficiency Exceeding 100 % via MEG in a Quantum Dot Solar Cell. Science 2011, 334, 1530–1533.

    Google Scholar 

  78. Dayal, S.; Kopidakis, N.; Olson, D. C.; Ginley, D. S; Rumbles, G. Photovoltaic Devices with a Low B and Gap Polymer and CdSe Nanostructures Exceeding 3 % Efficiency. Nano Letters 2010, 10, 239–242.

    Google Scholar 

  79. Zhou, Y.; Eck, M.; Men, C.; Rauscher, F.; Niyamakom, P.; Yilmaz, S.; Dumsch, I.; Allard, S.; Scherf, U.; Krüger, M. Efficient polymer nanocrystal hybrid solar cells by improved nanocrystal composition. Solar Energy Mater. Solar Cells 2011, 95, 3227–3232.

    Google Scholar 

  80. Zhou, R.; Zheng, Y.; Qian, L.; Yang, Y.; Holloway, P. H.; Xue, J. Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability. Nanoscale 2012, 4, 3507.

    Google Scholar 

  81. Celik, D.; Krueger, M.; Veit, C.; Schleiermacher, H. F.; Zimmermann, B.; Allard, S.; Dumsch, I.; Scherf, U.; Rauscher, F.; Niyamakom, P. Performance enhancement of CdSe nanorod-polymer based hybrid solar cells utilizing a novel combination of post-synthetic nanoparticle surface treatments. Solar Energy Mater. Solar Cells 2012, 98, 433–440.

    Google Scholar 

  82. Guchhait, A.; Pal, A. J. Copper-Diffused AgInS2Ternary Nanocrystals in Hybrid Bulk-Heterojunction Solar Cells: Near-Infrared Active Nanophotovoltaics. ACS Applied Materials & Interfaces 2013, 5, 4181–4189.

    Google Scholar 

  83. Leventis, H. C.; King, S. P.; Sudlow, A.; Hill, M. S.; Molloy, K. C.; Haque, S. A. Nanostructured Hybrid Polymer-Inorganic Solar Cell Active Layers Formed by Controllable in Situ Growth of Semiconducting Sulfide Networks. Nano Letters 2010, 10, 1253–1258.

    Google Scholar 

  84. Greaney, M. J.; Das, S.; Webber, D. H.; Bradforth, S. E.; Brutchey, R. L. Improving Open Circuit Potential in Hybrid P3HT:CdSe Bulk Heterojunction Solar Cells via Colloidal tert-Butylthiol Ligand Exchange. ACS Nano 2012, 6, 4222–4230.

    Google Scholar 

  85. Radychev, N.; Lokteva, I.; Witt, F.; Kolny-Olesiak, J.; Borchert, H; Parisi, J. Physical Origin of the Impact of Different Nanocrystal Surface Modifications on the Performance of CdSe/P3HT Hybrid Solar Cells. The Journal of Physical Chemistry C 2011, 115, 14111–14122.

    Google Scholar 

  86. Fu, H.; Choi, M.; Luan, W.; Kim, Y.; Tu, S. Hybrid solar cells with an inverted structure: Nanodots incorporated ternary system. Solid-State Electronics 2012, 69, 50–54.

    Google Scholar 

  87. Lek, J. Y.; Xi, L.; Kardynal, B. E.; Wong, L. H.; Lam, Y. M. Understanding the Effect of Surface Chemistry on Charge Generation and Transport in Poly (3-hexylthiophene)/CdSe Hybrid Solar Cells. ACS Applied Materials & Interfaces 2011, 3, 287–292.

    Google Scholar 

  88. Wu, Y; Zhang, G. Performance Enhancement of Hybrid Solar Cells Through Chemical Vapor Annealing. Nano Letters 2010, 10, 1628–1631.

    Google Scholar 

  89. Kuo, C.; Su, M.; Chen, G.; Ku, C.; Lee, H.; Wei, K. Annealing treatment improves the morphology and performance of photovoltaic devices prepared from thieno[3,4-c]pyrrole -4,6-dione-based donor/acceptor conjugated polymers and CdSe nanostructures. Energy & Environmental Science 2011, 4, 2316.

    Google Scholar 

  90. Fan, Z.; Zhang, H.; Yu, W.; Xing, Z.; Wei, H.; Dong, Q.; Tian, W.; Yang, B. Aqueous-Solution-Processed Hybrid Solar Cells from Poly(1,4-naphthalenevinylene) and CdTe Nanocrystals. ACS Applied Materials & Interfaces 2011, 3, 2919–2923.

    Google Scholar 

  91. Chen, Z.; Zhang, H.; Xing, Z.; Hou, J.; Li, J.; Wei, H.; Tian, W.; Yang, B. Aqueous-solution-processed hybrid solar cells with good thermal and morphological stability. Solar Energy Mater. Solar Cells 2013, 109, 254–261.

    Google Scholar 

  92. Yu, W.; Zhang, H.; Fan, Z.; Zhang, J.; Wei, H.; Zhou, D.; Xu, B.; Li, F.; Tian, W.; Yang, B. Efficient polymer/nanocrystal hybrid solar cells fabricated from aqueous materials. Energy & Environmental Science 2011, 4, 2831.

    Google Scholar 

  93. Chen, H.; Lai, C.; Wu, I.; Pan, H.; Chen, I. P.; Peng, Y.; Liu, C.; Chen, C. h.; Chou, P. Enhanced Performance and Air Stability of 3.2 % Hybrid Solar Cells: How the Functional Polymer and CdTe Nanostructure Boost the Solar Cell Efficiency. Adv Mater 2011, 23, 5451–5455.

    Google Scholar 

  94. Wei, H.; Zhang, H.; Sun, H.; Yu, W.; Liu, Y.; Chen, Z.; Cui, L.; Tian, W.; Yang, B. Aqueous-solution-processed PPV–CdxHg1-xTe hybrid solar cells with a significant near-infrared contribution. Journal of Materials Chemistry 2012, 22, 17827.

    Google Scholar 

  95. Saha, S. K.; Guchhait, A.; Pal, A. J. Cu2ZnSnS4 (CZTS) nanoparticle based nontoxic and earth-abundant hybrid pn-junction solar cells. Physical Chemistry Chemical Physics 2012, 14, 8090.

    Google Scholar 

  96. Rath, T.; Kaltenhauser, V.; Haas, W.; Reichmann, A.; Hofer, F.; Trimmel, G. Solution-processed small molecule/copper indium sulfide hybrid solar cells. Solar Energy Mater. Solar Cells 2013, 114, 38–42.

    Google Scholar 

  97. Zhao, N.; Osedach, T. P.; Chang, L.; Geyer, S. M.; Wanger, D.; Binda, M. T.; Arango, A. C.; Bawendi, M. G; Bulovic, V. Colloidal PbS Quantum Dot Solar Cells with High Fill Factor. ACS Nano 2010, 4, 3743–3752.

    Google Scholar 

  98. Nam, M.; Lee, T.; Kim, S.; Kim, S.; Kim, S.; Lee, K. Two strategies to enhance efficiency of PbS quantum dot solar cells: Removing surface organic ligands and configuring a bilayer heterojunction with a new conjugated polymer. Organic Electronics 2014, 15, 391–398.

    Google Scholar 

  99. Kim, G.; Kim, H.; Walker, B.; Choi, H.; Yang, C.; Park, J.; Kim, J. Y. Effects of Ionic Liquid Molecules in Hybrid PbS Quantum Dot-Organic Solar Cells. ACSApplied Materials & Interfaces 2013, 5, 1757–1760.

    Google Scholar 

  100. Seo, J.; Cho, M. J.; Lee, D.; Cartwright, A. N.; Prasad, P. N. Efficient Heterojunction Photovoltaic Cell Utilizing Nanocomposites of Lead Sulfide Nanocrystals and a Low-Bandgap Polymer. Adv Mater 2011, 23, 3984–3988.

    Google Scholar 

  101. Piliego, C.; Manca, M.; Kroon, R.; Yarema, M.; Szendrei, K.; Andersson, M. R.; Heiss, W.; Loi, M. A. Charge separation dynamics in a narrow band gap polymer–PbS nanocrystal blend for efficient hybrid solar cells. Journal of Materials Chemistry 2012, 22, 24411.

    Google Scholar 

  102. Baral, J. K.; Sharma, A.; Wang, D.; Ma, D.; Truong, V.; Izquierdo, R. Enhanced photovoltaic conversion efficiency in bulk heterojunction solar cells upon incorporating nanohybridized PbS quantum dots/multiwall carbon nanotubes. The European Physical Journal Applied Physics 2014, 65, 10201.

    Google Scholar 

  103. Nam, M.; Park, J.; Kim, S.; Lee, K. Broadband-absorbing hybrid solar cells with efficiency greater than 3 % based on a bulk heterojunction of PbS quantum dots and a low-bandgap polymer. Journal of Materials Chemistry A 2014, 2, 3978.

    Google Scholar 

  104. Chen, H.; Hou, J.; Dayal, S.; Huo, L.; Kopidakis, N.; Beard, M. C.; Luther, J. M. A p-Type Quantum Dot/Organic Donor:Acceptor Solar-Cell Structure for Extended Spectral Response. Advanced Energy Materials 2011, 1, 528–533.

    Google Scholar 

  105. Zhang, Y.; Li, Z.; Ouyang, J.; Tsang, S.; Lu, J.; Yu, K.; Ding, J.; Tao, Y. Hole transfer from PbS nanocrystal quantum dots to polymers and efficient hybrid solar cells utilizing infrared photons. Organic Electronics 2012, 13, 2773–2780.

    Google Scholar 

  106. Nam, M.; Kim, S.; Kang, M.; Kim, S.; Lee, K. Efficiency enhancement in organic solar cells by configuring hybrid interfaces with narrow bandgap PbSSe nanocrystals. Organic Electronics 2012, 13, 1546–1552.

    Google Scholar 

  107. Nam, M.; Kim, S.; Kim, S.; Kim, S.; Lee, K. Efficient hybrid solar cells using PbSxSe1-x quantum dots and nanorods for broad-range photon absorption and well-assembled charge transfer networks. Nanoscale 2013, 5, 8202.

    Google Scholar 

  108. Choi, J. J.; Lim, Y.; Santiago-Berrios, M. B.; Oh, M.; Hyun, B.; Sung, L.; Bartnik, A. C.; Goedhart, A.; Malliaras, G. G.; Abruna, H. D.; Wise, F. W; Hanrath, T. PbSe Nanocrystal Excitonic Solar Cells. Nano Letters 2009, 9, 3749–3755.

    Google Scholar 

  109. Pattantyus-Abraham, A. G.; Kramer, I. J.; Barkhouse, A. R.; Wang, X.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M. K.; Gra¨tzel, M.; Sargent, E. H. Depleted-Heterojunction Colloidal Quantum Dot Solar Cells. ACS Nano 2010, 4, 3374–3380.

    Google Scholar 

  110. Debnath, R.; Tang, J.; Barkhouse, D. A.; Wang, X.; Pattantyus-Abraham, A. G.; Brzozowski, L.; Levina, L.; Sargent, E. H. Ambient-Processed Colloidal Quantum Dot Solar Cells via Individual Pre-Encapsulation of Nanoparticles. J. Am. Chem. Soc. 2010, 132, 5952–5953.

    Google Scholar 

  111. Jeong, K. S.; Tang, J.; Liu, H.; Kim, J.; Schaefer, A. W.; Kemp, K.; Levina, L.; Wang, X.; Hoogland, S.; Debnath, R.; Brzozowski, L.; Sargent, E. H.; Asbury, J. B. Enhanced Mobility-Lifetime Products in PbS Colloidal Quantum Dot Photovoltaics. ACSNano 2012, 6, 89–99.

    Google Scholar 

  112. Rath, A. K.; Bernechea, M.; Martinez, L.; Pelayo Garcia de Arquer, F.; Osmond, J.; Konstantatos, G. Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells. Nature Photonics 2012, 6, 529–534.

    Google Scholar 

  113. Ip, A. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; Levina, L.; Rollny, L. R.; Carey, G. H.; Fischer, A.; Kemp, K. W.; Kramer, I. J.; Ning, Z.; Labelle, A. J.; Chou, K. W.; Amassian, A.; Sargent, E. H. Hybrid passivated colloidal quantum dot solids. Nature Nanotechnology 2012, 7, 577–582.

    Google Scholar 

  114. Gao, J.; Jeong, S.; Lin, F.; Erslev, P. T.; Semonin, O. E.; Luther, J. M.; Beard, M. C. Improvement in carrier transport properties by mild thermal annealing of PbS quantum dot solar cells. Applied Physics Letters 2013, 102, 043506.

    Google Scholar 

  115. Fischer, A.; Rollny, L.; Pan, J.; Carey, G. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Kim, J. Y.; Bakr, O. M.; Sargent, E. H. Directly Deposited Quantum Dot Solids Using a Colloidally Stable Nanoparticle Ink. Adv Mater 2013, 25, 5742–5749.

    Google Scholar 

  116. Piliego, C.; Protesescu, L.; Bisri, S. Z.; Kovalenko, M. V.; Loi, M. A. 5.2 % efficient PbS nanocrystal Schottky solar cells. Energy & Environmental Science 2013, 6, 3054–3059.

    Google Scholar 

  117. Rath, A. K.; Bernechea, M.; Martinez, L.; Konstantatos, G. Solution-Processed Heterojunction Solar Cells Based on p-type PbS Quantum Dots and n-type Bi2S3 Nanocrystals. Adv Mater 2011, 23, 3712–3717.

    Google Scholar 

  118. Choi, J. J.; Wenger, W. N.; Hoffman, R. S.; Lim, Y.; Luria, J.; Jasieniak, J.; Marohn, J. A.; Hanrath, T. Solution-Processed Nanocrystal Quantum Dot Tandem Solar Cells. Adv Mater 2011, 23, 3144–3148.

    Google Scholar 

  119. Wang, X.; Koleilat, G. I.; Tang, J.; Liu, H.; Kramer, I. J.; Debnath, R.; Brzozowski, L.; Barkhouse, D. A. R.; Levina, L.; Hoogland, S.; Sargent, E. H. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nature Photonics 2011, 5, 480–484.

    Google Scholar 

  120. Speirs, M. J.; Groeneveld, B. G. H. M.; Protesescu, L.; Piliego, C.; Kovalenko, M.; Loi, M. A. Hybrid inorganic-organic tandem solar cells for broad absorption of the solar spectrum. Physical Chemistry Chemical Physics 2014, 16, 7672–7676.

    Google Scholar 

  121. Osedach, T. P.; Zhao, N.; Andrew, T. L.; Brown, P. R.; Wanger, D. D.; Strasfeld, D. B.; Chang, L.; Bawendi, M. G.; Bulovic, V. Bias-Stress Effect in 1,2-Ethanedithiol-Treated PbS Quantum Dot Field-Effect Transistors. ACS Nano 2012, 6, 3121–3127.

    Google Scholar 

  122. Zhitomirsky, D.; Furukawa, M.; Tang, J.; Stadler, P.; Hoogland, S.; Voznyy, O.; Liu, H.; Sargent, E. H. N-Type Colloidal-Quantum-Dot Solids for Photovoltaics. Adv Mater 2012, 24, 6181–6185.

    Google Scholar 

  123. Tang, J.; Wang, X.; Brzozowski, L.; Barkhouse, D. A. R.; Debnath, R.; Levina, L.; Sargent, E. H. Schottky Quantum Dot Solar Cells Stable in Air under Solar Illumination. Adv Mater 2010, 22, 1398–1402.

    Google Scholar 

  124. Balazs, D. M.; Nugraha, M. I.; Bisri, S. Z.; Sytnyk, M.; Heiss, W.; Loi, M. A. Reducing charge trapping in PbS colloidal quantum dot solids. Applied Physics Letters 2014, 104, 112104.

    Google Scholar 

  125. Zhang, J.; Gao, J.; Miller, E. M.; Luther, J. M.; Beard, M. C. Diffusion-Controlled Synthesis of PbS and PbSe Quantum Dots within Situ Halide Passivation for Quantum Dot Solar Cells. ACS Nano 2014, 8, 614–622.

    Google Scholar 

  126. Tang, J.; Brzozowski, L.; Barkhouse, D. A. R.; Wang, X.; Debnath, R.; Wolowiec, R.; Palmiano, E.; Levina, L.; Pattantyus-Abraham, A. G.; Jamakosmanovic, D.; Sargent, E. H. Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability. ACSNano 2010, 4, 869–878.

    Google Scholar 

  127. Gao, J.; Johnson, J. C. Charge Trapping in Bright and Dark States of Coupled PbS Quantum Dot Films. ACSNano 2012, 6, 3292–3303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Loi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Balazs, D., Speirs, M., Loi, M. (2014). Colloidal Inorganic–Organic Hybrid Solar Cells. In: Huang, H., Huang, J. (eds) Organic and Hybrid Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-10855-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10855-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10854-4

  • Online ISBN: 978-3-319-10855-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics