Skip to main content

Monsters, Black Holes and Entropy

  • Chapter
  • First Online:
Quantum Aspects of Black Holes

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 178))

Abstract

Classical general relativity allows for compact objects—“monsters”—with more entropy than black holes of equal mass. We construct examples of such configurations and describe their general properties. Monsters are problematic for certain versions of the AdS/CFT duality, and possibly even for the application of statistical mechanics to quantum gravity. It is possible that they are somehow excluded from the Hilbert space of quantum gravity, although this would be in contrast to the usual case in which coarse-grained, semiclassical configurations have (many) quantum counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note, we need to restrict the size of the object as well as its total energy. An object with fixed total energy \(E = T^4 R^3\), but no restriction on \(R\), can have infinite entropy: we can take \(R\rightarrow \infty \) and \(T\rightarrow 0\) with \(E\) fixed, so that \(S = T^3 R^3 = E / T \rightarrow \infty \).

  2. 2.

    Of course, it is also possible that the initial pure state is atypical and subsequent dynamics somehow keeps the state in a very atypical region of the Hilbert space over very long time scales, so that the highly entropic configurations are essentially never sampled. In that case one cannot deduce the thermodynamic properties of the system from the concentration of measure phenomenon (i.e., typicality) alone: the system does not actually reach ultimate equilibrium.

References

  1. Marolf, D.: Gen. Rel. Grav. 41, 903 (2009). arXiv:0810.4886 [gr-qc]

  2. Hossenfelder, S., Smolin, l.: Phys. Rev. D 81, 064009 (2010). arXiv:0901.3156 [gr-qc]

  3. Strominger, A., Vafa, C.: Phys. Lett. B 379, 99 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. Maldacena, J.M., Strominger, A., Witten, E.: JHEP 12, 002 (1997)

    Article  ADS  Google Scholar 

  5. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  6. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  7. Jacobson, T. arXiv:gr-qc/9908031

  8. Hooft, G.’t.: In:Ali et al. (eds.) Salamfestschrift. World Scientific (1994)

    Google Scholar 

  9. Thorne, K.S.: In: Klauder, J.R. (eds.) Magic Without Magic. Freeman (1973)

    Google Scholar 

  10. Eardley, D.M., Giddings, S.B.: Phys. Rev. D 66, 044011 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hsu, S.D.H.: Phys. Lett. B 555, 92 (2003)

    Article  ADS  Google Scholar 

  12. Hawking, S.W.: Phys. Rev. D 14, 2460 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hsu, S.D.H.: Phys. Lett. B 644, 67 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hsu, S.D.H. arXiv:gr-qc/9801106

  15. Sorkin, R.D., Wald, R.M., Zhang, Z.J.: Gen. Rel. Grav. 13, 1127 (1981)

    Article  ADS  Google Scholar 

  16. Hsu, S.D.H., Reeb, D.: Phys. Lett. B 658, 244 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  17. Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Phys. Rept. 323, 183 (2000)

    Article  ADS  Google Scholar 

  18. Bousso, R.: JHEP 07, 004 (1999)

    Article  ADS  Google Scholar 

  19. Flanagan, E.E., Marolf, D., Wald, R.M.: Phys. Rev. D 62, 084035 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  20. Hsu, S.D.H., Reeb, D.: Class. Quant. Grav. 25, 235007 (2008)

    Article  ADS  Google Scholar 

  21. Popescu, S., Short, A.J., Winter, A.: Nat. Phys. 2, 754 (2006). See also. arXiv:quant-ph/0511225

  22. Gemmer, J., Michel, M., Mahler, G.: Quantum Thermodynamics: Emergence of Thermodynamic Behavior Within Composite Quantum Systems, Springer, Berlin (2004)

    Google Scholar 

  23. Ledoux, M.: The Concentration of Measure Phenomenon. American Mathematical Society, Providence (2001)

    Google Scholar 

  24. Linden, N., Popescu, S., Short, A.J., Winter, A. arXiv:0812.2385 [quant-ph]

  25. Hayden, P., Leung, D.W., Winter, A.: Comm. Math. Phys. 265, 95 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. Misner, C.W., Thorne, K.S., Wheeler, J. A.: Gravitation. Freeman (1973)

    Google Scholar 

  27. Kiefer, C.: Quantum Gravity, 2nd edn. Oxford University Press, Oxford (2007)

    Google Scholar 

Download references

Acknowledgments

The author acknowledges support from the Office of the Vice-President for Research and Graduate Studies at Michigan State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. H. Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hsu, S.D.H. (2015). Monsters, Black Holes and Entropy. In: Calmet, X. (eds) Quantum Aspects of Black Holes. Fundamental Theories of Physics, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-319-10852-0_4

Download citation

Publish with us

Policies and ethics