Skip to main content

Hyphenated Techniques

  • Chapter
  • First Online:

Abstract

The depth of information obtainable from a single electroanalytical technique like the voltammetry of immobilized particles and droplets is naturally limited. Consequently, the combinations of electroanalytical techniques with non-electrochemical techniques become important and attractive. In particular, in situ combinations are powerful tools for investigating electrode processes. They are based on a simultaneous recording of electrochemical and non-electrochemical signals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Goldberg IB, McKinney TM (1984) Principles and techniques of electrochemical electron spin resonance experiments. In: Kissinger PT, Heinemann WR (eds) Laboratory techniques in electroanalytical chemistry. Dekker, New York Basel, pp 675–699

  2. 2.

    Bagchi RN, Bond AM, Scholz F (1989) Electroanalysis 1:1–11

  3. 3.

    Birke RL, Lu T, Lombardi JR, (1990) Surface enhanced Raman spectroscopy. In: Varma R, Selman JR (eds) Techniques for characterization of electrodes and electrochemical processes. Wiley, New York, pp 211–277

  4. 4.

    Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York, pp 704–709

  5. 5.

    Arsov LD, Plieth W, Koßmehl G (1998) J Solid State Electrochem 2:355–368

  6. 6.

    Kulesza PJ, Malik MA, Denca A, Strojek J (1996) Anal Chem 68:2442–2446

  7. 7.

    Mortimer RJ, Rosseinski DR (1984) JCS Dalton Trans 2059–2062

  8. 8.

    Kulesza PJ, Zamponi S, Malik MA, Miecznikowski K, Berrettoni M, Marassi R (1997) J Solid State Electrochem 1:88–93

  9. 9.

    Malinauskas A, Holze R (1998) Electrochim Acta 43:2563–2575

  10. 10.

    Monk PMS, Mortimer RJ, Rosseinsky DR (1995) Electrochromism: fundamentals and applications. VCH, Weinheim

  11. 11.

    Plieth W, Wilson GS, GutuiÕrrez de la Fe C (1998) Pure Appl Chem 70:1395–1414

  12. 12.

    Kortüm G (1969) Reflexionsspektroskopie. Springer, Berlin

  13. 13.

    Piette LH, Ludwig P, Adams RN (1962) Anal Chem 34:916–921

  14. 14.

    Bard AJ, Mirkin MV (eds) (2001) Electrochemical microscopy. Taylor & Francis, Boca Raton, FL

  15. 15.

    See, for instance, Buttry DA (1991) Applications of the quartz crystal microbalance to electrochemistry. In: Bard AJ (ed) Electroanalytical chemistry, vol 17. Dekker, New York

References

  1. Bond AM, Marken F (1994) Mechanistic aspects of the electron and ion transport processes across the electrode|solid solvent (electrolyte) interface of microcrystalline decamethylferrocene attached mechanically to a graphite electrode. J Electroanal Chem 372:125–135

    Article  CAS  Google Scholar 

  2. Dostal A, Schröder U, Scholz F (1995) Electrochemistry of chromium(II) hexacyanochromate(III)) and electrochemically induced isomerization of solid iron(II) hexacyanochromate(III)) mechanically imobilized on the surface of a graphite electrode. Inorg Chem 34:1711–1717

    Article  CAS  Google Scholar 

  3. Dostal A, Meyer B, Scholz F, Schröder U, Bond AM, Marken F, Shaw SJ (1995) Electrochemical study of microcrystalline solid Prussian blue particles mechanically attached to graphite and gold electrodes: electrochemically induced lattice reconstruction. J Phys Chem 99:2096–2103

    Article  CAS  Google Scholar 

  4. Meyer B, Ziemer B, Scholz F (1995) In situ X-ray diffraction study of the electrochemical reduction of tetragonal lead oxide and orthorhombic Pb(OH)Cl mechanically immobilized on a graphite electrode. J Electroanal Chem 392:79–83

    Article  Google Scholar 

  5. Shaw SJ, Marken F, Bond AM (1996) Simultaneous electrochemical and quartz crystal microbalance studies of nonconducting microcrystalline particles of trans-Cr(CO)2(dpe)2 and trans-[Cr(CO)2(dpe)2]+ (dpe = Ph2PCH2CH2PDh2) attached to gold electrodes. J Electroanal Chem 404:227–235

    Article  Google Scholar 

  6. Shaw SJ, Marken F, Bond AM (1996) Detection of new features associated with the oxidation of microcrystalline tetrathiafulvalene attached to gold electrodes by the simultaneous application of electrochemical and quartz crystal microbalance techniques. Electroanalysis 8:732–741

    Article  CAS  Google Scholar 

  7. Bond AM, Fletcher S, Marken F, Shaw SJ, Symons PG (1996) Electrochemical and X-ray diffraction study of the redox cycling of nanocrystals of 7,7,8,8-tetracyanoquinodimethane . Observation of a solid phase transformation controlled by nucleation and growth . J Chem Soc Faraday Trans 92(20):3925–2933

    Article  CAS  Google Scholar 

  8. Schröder U, Meyer B, Scholz F (1996) A cell for in-situ incident-light microscopy for the study of electrochromism of solid state electrochemical reactions. Fresenius J Anal Chem 356:295–298

    Google Scholar 

  9. Bond AM, Colton R, Mahon PJ, Tan WT (1997) Tetrabutylammonium cation expulsion versus perchlorate electrolyte anion uptake in the electrochemical oxidation of microcrystals of [(C4H9)4N][Cr(CO)5I] mechanically attached to a gold electrode: a voltammetric and quartz crystal microbalance study. J Solid State Electrochem 1:53–61

    Article  CAS  Google Scholar 

  10. Schröder U, Scholz F (1997) Microscopic in situ diffuse reflectance spectroelectrochemistry of solid state electrochemical reactions of particles immobilized on electrodes. J Solid State Electrochem 1:62–67

    Article  Google Scholar 

  11. Bond AM, Fiedler DA (1997) In situ electrochemical and electron spin resonance studies of microcrystals mechanically attached to an electrode surface. J Electrochem Soc 144:1566–1574

    Article  CAS  Google Scholar 

  12. Bond AM, Marken F, Hill E, Compton RG, Hügel H (1997) The electrochemical reduction of indigo dissolved in organic solvents and as a solid mechanically attached to a basal plane pyrolytic graphite electrode immersed in aqueous electrolyte solution. J Chem Soc Perkin Trans 2:1735–1742

    Article  Google Scholar 

  13. Marken F, Webster RD, Bull SD, Davies SG (1997) Redox processes in microproplets studied by voltammetry, microscopy, and ESR spectroscopy: oxidation of N,N,N′,N′-tetrahexylphenylene diamine deposited on solid electrode surfaces and immersed in aqueous electrolyte solution. J Electroanal Chem 437:209–218

    Article  CAS  Google Scholar 

  14. Kulesza PJ, Malik MA, Berrettoni M, Giorgetti M, Zamponi S, Schmidt R, Marassi R (1998) Electrochemical charging, countercation accomodation, and spectrochemical identity of microcrystalline solid cobalt hexacyanoferrate . J Phys Chem B 102:1870–1876

    Article  CAS  Google Scholar 

  15. Bond AM, Fletcher S, Symons PG (1998) The relationship between the electrochemistry and the crystallography of microcrystals – the case of TCNQ (7,7,8,8-tetracyanoquinodimethane). Analyst 123:1891–1904

    Article  CAS  Google Scholar 

  16. Bond M, Deacon GB, Howitt J, MacFarlane DR, Spiccia L, Wolfbauer G (1998) Voltammetric determination of the reversible redox potential for the oxidation of the highly active polypyridyl ruthenium photovoltaic sensitizer cis–Ru(II)(dcbpy)2(NCS) 2 . J Electrochem Soc 146:648–656

    Article  Google Scholar 

  17. Suárez MF, Marken F, Compton RG, Bond AM, Miao WJ, Raston CL (1999) Evidence for nucleation-growth, redistribution, and dissolution mechanisms during the course of redox cycling experiments on the C-60 /NBu4C60 solid-state redox system – voltammetric, SEM, and in-situ AFM studies. J Phys Chem 103:5637–5644

    Article  Google Scholar 

  18. Suárez MF, Bond AM, Compton RG (1999) Significance of redistribution reactions detected by in situ atomic force microscopy during early stages of fast scan rate redox cycling experiments at a solid 7,7,8,8-tetracyanoquinodimethane -glassy carbon electrode-aqueous (electrolyte) interface. J Solid State Electrochem 4:24–33

    Article  Google Scholar 

  19. Eklund JC, Bond AM (1999) Photocatalytic reactions at microcrystalline fac-Mn(CO)32-Ph2PCH2PPh2)Cl -electrode-aqueous (electrolyte) interfaces. J Am Chem Soc 121:8306–8312

    Article  CAS  Google Scholar 

  20. Schröder U, Scholz F (2000) The solid state electrochemistry of metal octacyanomolybdates , octacyanotungstates , and hexacyanoferrates explained on the basis of dissolution and reprecipitation reactions, their lattice structures and crystallinities. Inorg Chem 39:1006–1015

    Article  Google Scholar 

  21. Bond AM, Miao W, Raston CL (2000) Identification of processes that occur after reduction and dissolution of C60 adhered to gold, glassy carbon, and platinum electrodes placed in acetonitrile (electrolyte) solution. J Phys Chem B 104:2320–2329

    Article  CAS  Google Scholar 

  22. Hasse U, Scholz F (2001) In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilized on an electrode surface. Electrochem Commun 3:429–434

    Article  CAS  Google Scholar 

  23. Bárcena Soto M, Kubsch G, Scholz F (2002) Cyclic voltammetry of immobilized microparticles with in situ calorimetry . Part I: The thermistor electrode. J Electroanal Chem 528:18–26

    Article  Google Scholar 

  24. Bárcena Soto M, Scholz F (2002) Cyclic voltammetry of immobilized microparticles with in situ calorimetry. Part II: Application of a thermistor electrode for in situ calorimetric studies of the electrochemistry of solid metal hexacyanoferrates. J Electroanal Chem 528:27–32

    Article  Google Scholar 

  25. Hasse U, Nießen J, Scholz F (2003) Atomic force microscopy of the electrochemical reductive dissolution of sub-micrometer sized crystals of goethite immobilized on a gold electrode. J Electroanal Chem 556:13–22

    Article  CAS  Google Scholar 

  26. Hasse U, Wagner K, Scholz F (2004) Nucleation at three-phase junction lines: in situ atomic force microscopy of the electrochemical reduction of sub micrometer size silver and mercury(I) halide crystals immobilized on gold electrodes. J Solid State Electrochem 8:842–853

    CAS  Google Scholar 

  27. Hasse U, Scholz F (2004) In situ AFM evidence of the involvement of an oversaturated solution in the course of oxidation of silver nanocrystals to silver iodide crystals. Electrochem Commun 6:409–412

    Article  CAS  Google Scholar 

  28. Komorsky-Lovrić Š, Mirčeski V, Kabbe C, Scholz F (2004) An in situ microscopic spectroelectrochemical study of a three-phase electrode where an ion transfer at the water|nitrobenzene interface is coupled to an electron transfer at the interface ITO|nitrobenzene. J Electroanal Chem 566:371–377

    Article  Google Scholar 

  29. Doménech-Carbó A, Doménech-Carbó MT (2006) Chronoamperometric study of proton transfer/electron transfer in solid state electrochemistry of organic dyes. J Solid State Electrochem 10:949–958

    Article  Google Scholar 

  30. Doménech-Carbó A, Doménech-Carbó MT (2008) In situ AFM study of proton-assisted electrochemical oxidation/reduction of microparticles of organic dyes. Electrochem Commun 10:1238–1241

    Article  Google Scholar 

  31. Doménech-Carbó A, Doménech-Carbó MT, Calisti M, Maiolo V (2010) Identification of naphtoquinonic and anthraquinonic dyes via sequential potential steps applied to the voltammetry of microparticles methodology. J Solid State Electrochem 14:465–477

    Article  Google Scholar 

  32. Doménech-Carbó A, Doménech-Carbó MT, Calisti M, Maiolo V (2010) Sequential identification of organic dyes using the voltammetry of microparticles approach. Talanta 81:404–414

    Article  Google Scholar 

  33. Doménech-Carbó A, Martini M, de Carvalho LM, Doménech-Carbó MT, Silva M (2013) Screening of pharmacologic adulterant classes in herbal formulations using voltammetry of microparticles. J Pharm Biomed Anal 74:194–204

    Article  Google Scholar 

  34. Doménech-Carbó A, Martini M, de Carvalho LM, Viana C, Doménech-Carbó MT, Silva M (2013) Standard additions-dilution method for absolute quantification in voltammetry of microparticles. Application for determining psychoactive 1,4-benzodiazepine and antidepressants drugs as adulterants in phytotherapeutic formulations. J Pharm Biomed Anal 80:159–163

    Article  Google Scholar 

  35. O’Mullane AP, Neufeld AK, Bond AM (2012) Scanning electrochemical microscopy study of the solid-solid interconversion of TCNQ to phase I and phase II CuTCNQ. Electrochem Commun 22:21–24

    Article  Google Scholar 

  36. Doménech-Carbó A, Montoya N, Alarcón J (2011) Electrochemical characterization of praseodymium centers in Pr x Zr1−x O2 zirconias using electrocatalysis and photoelectrocatalysis. J Solid State Electrochem 16:963–975

    Article  Google Scholar 

  37. Doménech-Carbó A, Montoya N, Alarcón J (2011) Electrochemical characterization of praseodymia doped zircon. Catalytic effect on the electrochemical reduction of molecular oxygen in polar organic solvents. Electrochim Acta 56:7104–7111

    Article  Google Scholar 

  38. Karnicka K, Eckhard K, Guschin DA, Stoica L, Kulesza PJ, Schuhmann W (2007) Visualisation of the local bio–electrocatalytic activity in biofuel cell cathodes by means of redox competition scanning electrochemical microscopy (RC-SECM). Electrochem Commun 9:1998–2002

    Article  CAS  Google Scholar 

  39. Szot K, Nogala W, Niedziolka-Jonsson J, Jonsson-Niedziolka M, Marken F, Rogalski J, Kirchner CN, Wittstock G, Opallo M (2010) Hydrophilic carbon nanoparticle-laccase thin film electrode for mediatorless dioxygen reduction: SECM activity mapping and application in zinc-dioxygen battery. Electrochim Acta 54:4620–4625

    Article  Google Scholar 

  40. Guadagnini L, Malijusch A, Chen X, Neugebauer S, Tonelli D, Schuhmann W (2009) Visualization of electrocatalytic activity of microstructured metal hexacyanoferrates by means of redox competition mode of scanning electrochemical microscopy (RC-SECM). Electrochim Acta 54:3753–3758

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scholz, F., Schröder, U., Gulaboski, R., Doménech-Carbó, A. (2015). Hyphenated Techniques. In: Electrochemistry of Immobilized Particles and Droplets. Springer, Cham. https://doi.org/10.1007/978-3-319-10843-8_4

Download citation

Publish with us

Policies and ethics