Skip to main content

Earlier Developed Techniques

  • Chapter
  • First Online:
Electrochemistry of Immobilized Particles and Droplets

Abstract

The first electrochemical experiments were performed with solid materials, esp. metals. However, these experiments, conducted in the eighteenth and nineteenth centuries, were directed toward the elucidation of the basic features of the electrical action of chemical substances and the chemical action of electricity. Initially, metals played the major role; only later it became obvious that many chemical compounds possess metallic or semiconducting properties that can be utilized in electrochemical cells. Parallel to the studies of new electrode materials, solid electrolytes were discovered and entire solid galvanic cells could be constructed. In this book, we will entirely neglect pure solid electrolytes because this is a field in its own and the subject of many thorough treatises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Kharton V (ed) (2009) Handbook of solid state electrochemistry. Wiley-VCH, Weinheim

  2. 2.

    Gellings PJ, Bouwmeester HJM (eds) (1996) The CRC handbook of solid state electrochemistry. CRC, Boca Raton, FL

  3. 3.

    Bruce PG (ed) (1995) Solid state electrochemistry. Cambridge University Press, Cambridge

  4. 4.

    Rickert H (1985) Solid state electrochemistry. An introduction. Springer, Berlin

  5. 5.

    Maier J (2000) Festkörper – Fehler und Funktion, Prinzipien der Physikalischen Festkörperchemie. Teubner, Stuttgart

  6. 6.

    Doménech-Carbó A, Labuda J, Scholz F (2013) Pure Appl Chem 85:609–631

  7. 7.

    Kolb D (2001) Angew Chem 113:1198–1220

  8. 8.

    Fischer H (1954) Elektrokristallisation von Metallen. Springer, Berlin

  9. 9.

    Budevski E, Staikov G, Lorenz WJ (1996) Electrochemical phase formation and growth. VCH, Weinheim

  10. 10.

    Slepushkin VV (1980) Zh Anal Khim 35:249–253

  11. 11.

    Slepushkin VV, Mykovnina GS (1985) Zashcita Metallov 21:280–282

  12. 12.

    Slepushkin VV (1987) Zh Anal Khim 42:606–616

  13. 13.

    Slepushkin VV, Stifatov BM, Neiman EYa (1994) Zh Anal Khim 49:911–919

  14. 14.

    Slepushkin VV, Stifatov BM (1996) Zh Anal Khim 51:553–511

  15. 15.

    Canturija VA, Vigdergauz VE (1993) Elektrokhimija sulfidov, teorija i praktika flotacii. Nauka, Moskva

  16. 16.

    Holliday RI, Richmond WR (1990) J Electroanal Chem 288:83–98

  17. 17.

    Jirkovský R (1934) Mikrochemie (N.F. 9) 15:331–342

  18. 18.

    Laitinen HA, Kolthoff IM (1941) J Phys Chem 45:1079–1093

  19. 19.

    Laitinen HA, Jennings WP, Parks TD (1946) Ind Eng Chem Anal Ed 18:355–358

  20. 20.

    Laitinen HA, Jennings WP, Parks TD (1946) Ind Eng Chem Anal Ed 18:358–359

  21. 21.

    Kolthoff IM, Kuroda PK (1951) Anal Chem 23:1306–1309

  22. 22.

    Kolthoff IM, Stock JT (1955) Analyst 80:860–870

  23. 23.

    Micka K (1956) Coll Czech Chem Commun 21:647–651

  24. 24.

    Micka K (1957) Coll Czech Chem Commun 22:1400–1410

  25. 25.

    Micka K (1960) Depolarisation of the dropping mercury electrode by suspensions of insoluble substances. In: Longmuir IS (ed) Advances in polarography, Proceedings of the second international congress, vol 3. Pergamon, Oxford, pp 1182–1190

  26. 26.

    Micka K (1965) Coll Czech Chem Commun 30:235–245

  27. 27.

    Micka K, Kadlec O (1966) Coll Czech Chem Commun 31:3837–3844

  28. 28.

    Micka K (1968) Fresenius’ Z Analyt Chem 234:119–121

  29. 29.

    Dausheva MR, Songina OA (1973) Uspekhi Khim 42:323–342 (English edition: Dausheva MR, Songina OA (1973) Russ Chem Rev 42:136–146)

  30. 30.

    Scholz F (2013) J Solid State Electrochem 17:1493–1504

  31. 31.

    Songina OA, Dausheva MR (1965) Elektrokhim 1:1464–1468

  32. 32.

    Franklin TC, Nnodimele R, Adeniyi WK, Hunt D (1987) J Electrochem Soc 134:2150–2153

  33. 33.

    Franklin TC, Nnodimele R, Adeniyi WK, Hunt D (1988) J Electrochem Soc 135:1944–946

  34. 34.

    Franklin TC, Adeniyi WK (1988) Anal Chim Acta 207:311–317

  35. 35.

    Franklin TC, Darlington J, Nnodimele R, Duty RC (1992) Heterogeneous catalysts for use in anodic electrosyntheses and electrodestruction of organic compounds in aqueous surfactant systems. In: Mackay RA, Texter J (eds) Electrochemistry in colloids and dispersions. VCH, New York, pp 319–329

  36. 36.

    Majer V (1943) Chem listy 37:202–204

  37. 37.

    Heyrovký J (1941) Polarographie. Theoretische Grundlagen, praktische Ausführung und Anwendungen der Elektrolyse mit der tropfenden Quecksilberelektrode. Springer, Wien, p 273

  38. 38.

    Pauli W, Valkó E (1929) Elektrochemie der Kolloide. Springer, Wien, p 296

  39. 39.

    Mackay RA, Texter J (eds) (1992) Electrochemistry in colloids and dispersions. VCH, New York

  40. 40.

    Heyrovský M, Jirkovský J, Müller B (1995) Langmuir 11:4293–4299

  41. 41.

    Heyrovský M, Jirkovský J, Štruplová-Bartáčková M (1995) Langmuir 11:4300–4308

  42. 42.

    Heyrovský M, Jirkovský J, Štruplová-Bartáčková M (1995) Langmuir 11:4309–4312

  43. 43.

    Mulvaney P (1998) Zeta potential and colloid reaction kinetics. In: Fendler JH (ed) Nanoparticles and nanostructured films. Wiley-VCH, Weinheim, pp 275–306

  44. 44.

    Morehouse CK, Glicksman R (1956) J Electrochem Soc 103:94–98

  45. 45.

    Glicksman R, Morehouse CK (1958) J Electrochem Soc 105:299–306

  46. 46.

    Cheng W, Zhou X-F, Compton RG (2013) Angew Chem Int Ed 52:12980–12982

  47. 47.

    Stuart EJE, Rees NV, Cullen JT, Compton RG (2013) Nanoscale 5:174–177

  48. 48.

    Zhou Y-G, Rees NV, Compton RG (2014) Phys Chem Chem Phys 15:761–763

  49. 49.

    Tschulik, K, Batchelor-McAuley C, Toh H-S, Stuart EJE, Compton RG (2014) Phys Chem Chem Phys 16:616–623

  50. 50.

    Hellberg D, Scholz F, Schauer F, Weitschies W (2002) Electrochem Commun 4:305–309

  51. 51.

    Hellberg D, Scholz F, Schubert F, Lovrić M, Omanović D, Agmo Hernández V, Thede R (2005) J Phys Chem B 109:14715–14726

  52. 52.

    Agmo Hernández V, Scholz F (2006) Langmuir 22:10723–10731

  53. 53.

    Agmo Hernández V, Scholz F (2008) Israel J Chem 48:169–184

  54. 54.

    Hermes M, Scholz F, Härdtner C, Walther R, Schild L, Wolke C, Lendeckel U (2011) Angew Chem Int Ed 50:6872–6875

  55. 55.

    Agmo Hernández V, Lendeckel U, Scholz F (2013) Electrochemistry of adhesion and spreading of lipid vesicles on electrodes. In: Vayenas CG, White RE (eds) Modern aspects of electrochemistry, vol 56; Applications of electrochemistry in medicine. Schlesinger M (ed). Springer, New York, pp 189–247

  56. 56.

    Morehouse CK, Glicksman R (1958) J Electrochem Soc 105:306–311

  57. 57.

    Glicksman R, Morehouse CK (1959) J Electrochem Soc 106:741–745

  58. 58.

    Adams RN (1958) Anal Chem 30:1576

  59. 59.

    Olson CJ, Adams RN (1960) Anal Chim Acta 22:582–589

  60. 60.

    Kuwana T, French WG (1964) Anal Chem 36:241

  61. 61.

    Barikov VG, Songina OA (1966) USSR patent No. 191209

  62. 62.

    Barikov VG, Rozhdestvenkaya ZB, Songina OA (1969) Zavod lab 35:776–778 (in Russian); (1969) Ind Lab 35:928–930 (in English)

  63. 63.

    Songina OA, Trushina IM, Rozhdestvenskaya ZB, Cherkasova NM (1973) Elektrokhimiya 9:1310–1312 (in Russian)

  64. 64.

    Songina OA (1978) Talanta 25:116–118, and papers cited there

  65. 65.

    Rozhdestvenskaya ZB, Sigitov VB, Songina OA (1979) Zhur analit khim 34:455–458 (in Russian); (1979) J Anal Chem USSR 34:350–353 (in English)

  66. 66.

    Songina OA, Rozhdestvenskaya ZB, Medvedeva EP (1976) Zavod lab 42:379–381 (in Russian); (1976) Ind Lab 42:505–507 (in English)

  67. 67.

    Rozhdestvenskaya ZB, Medvedeva EP, Songina OA (1981) Izvest Vyssh Uchebn Zaved, Khim Khimicheskaya Tekhnol 24:1389–1393

  68. 68.

    Brainina KhZ, Neyman EJa (1982) Tverdofaznye reakcii v elektroanaliticheskoy khimii. Khimija, Moskva

  69. 69.

    Brainina KhZ, Neyman EJa, Slepushkin VV (1988) Inversionnye elektroanaliticheskie metody. Khimija, Moskva

  70. 70.

    Brainina Kh, Neyman E (1993) Electroanalytical stripping methods. Wiley, New York

  71. 71.

    Alonso Sedano A, Tascón García LM, Vázquez Barbado DM, Sánchez Batanero P (2003) J Solid State Electrochem 7:301–308

  72. 72.

    Kulesza P, Malik A (1999) Solid-state voltammetry. In: Wieckowski A (ed) Interfacial electrochemistry, theory, experiment, and applications. Marcel Dekker, New York, pp 673–688

  73. 73.

    Girault HH, Schiffrin DJ (1989) Electrochemistry of liquid-liquid interfaces. In: Bard AJ (ed) Electroanalytical chemistry, vol 15. Marcel Dekker, New York

  74. 74.

    Vanysek P (1996) Modern techniques in electroanalysis. Wiley, New York

  75. 75.

    Volkov AG (ed) (2001) Liquid interfaces in chemical, biological, and pharmaceutical applications. Marcel Dekker, New York

  76. 76.

    Scholz F (2006) Annu Rep Progr Chem C 102:43–70

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scholz, F., Schröder, U., Gulaboski, R., Doménech-Carbó, A. (2015). Earlier Developed Techniques. In: Electrochemistry of Immobilized Particles and Droplets. Springer, Cham. https://doi.org/10.1007/978-3-319-10843-8_1

Download citation

Publish with us

Policies and ethics