Skip to main content

Sensitivity of GOCE Gravity Gradients to Crustal Thickness and Density Variations: Case Study for the Northeast Atlantic Region

  • Conference paper
Gravity, Geoid and Height Systems

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 141))

Abstract

We discuss the gravity gradient signal measured at the height of the GOCE satellite and compare it with the gravity gradients related to the density contrast between crust and mantle. The gravity gradients are reduced for the topographic masses to emphasize the lithospheric signal. Comparison with the Moho-related signal shows that with a density contrast of 400 kg/m3, the amplitude of the calculated gradients is almost twice that of the observed field. The differences can only partly be explained by the uncertainty of the crustal thickness, but is clearly related to the applied density contrast. Calculation of the gravity gradients requires a reduced density contrast, which is an important consideration for establishing global models, which might otherwise overestimate crustal thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afonso JC, Fernàndez M, Ranalli G, Griffin WL, Connolly JAD (2008) Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: methodology and applications. Geochem Geophys Geosyst 9(5). doi:10.1029/2007GC001834

  • Álvarez O, Gimenez M, Braitenberg C, Folguera A (2012) GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region. Geophysical J Int 190:941–959. doi:10.1111/j.I365-246X.2012.05556.x

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 Arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24

    Google Scholar 

  • Bouman J, Ebbing J, Fuchs M, Schmidt M, Bosch W, Schwatke C, Abdul Fattah R, Meekes S, Abbink O, Schavemaker Y (2011) Heterogeneous gravity data combination for Earth interior and geophysical exploration research. In: Proceedings GOCE User Workshop 2011, ESA SP-696

    Google Scholar 

  • Bouman J, Ebbing J, Fuchs M (2013) Reference frame transformation of satellite gravity gradients and topographic mass reduction. JGR Solid Earth 118:1–17. doi:10.1029/2012JB009747

    Google Scholar 

  • Chappel AR, Kusznir NJ (2008) Three-dimensional gravity inversion for Moho depth at rifted margins incorporating a lithosphere thermal gravity anomaly correction. Geophys J Int 174:1–13

    Article  Google Scholar 

  • Ebbing J (2007) Isostatic density modelling explains the missing root of the Scandes. Norw J Geol 87:13–20

    Google Scholar 

  • Ebbing J, Olesen O (2005) The Northern and Southern Scandes – structural differences revealed by an analysis of gravity anomalies, the geoid and regional isostasy. Tectonophysics 411:73–87

    Article  Google Scholar 

  • Ebbing J, England RW, Korja T, Lauritsen T, Olesen O, Stratford W, Weidle C (2012) Structure of the Scandes lithosphere from surface to depth. Tectonophysics 536–537:1–24. doi:10.1016/j.bbr.2011.03.031

    Article  Google Scholar 

  • Goiginger H, Hoeck E, Rieser D, Mayer-Guerr T, Maier A, Krauss S, Pail R, Fecher T, Gruber T, Brockmann J, Krasbutter I, Schuh W, Jaeggi A, Prange L, Hausleitner W, Baur O, Kusche J (2011) The combined satellite-only global gravity field model GOCO02S. Presented at the 2011 general assembly of the European geosciences union, Vienna, Austria, 4–8 April

    Google Scholar 

  • Grad M, Tiira T, ESC Working Group (2009) The Moho depth map of the European Plate. Geophys J Int 176:279–292

    Article  Google Scholar 

  • Mayer-Guerr T, Rieser D, Höck E, Brockmann JM, Schuh WD, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03s. Poster presented at the GGHS2012, Venice

    Google Scholar 

  • Olesen O, Brönner M, Ebbing J, Gellein J, Gernigon L, Koziel J, LauritsenT MR, Sand M, Solheim D, Usov S (2010) New aeromagnetic and gravity compilations from Norway and adjacent areas – methods and applications. Petrol Geol Conf 7:559–586

    Google Scholar 

  • Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh WD, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843. doi:10.1007/s00190-011-0467-x

    Article  Google Scholar 

  • Sampietro D (2011) GOCE exploitation for Moho modeling and applications. In: Proceedings of the 4th international GOCE user workshop, Munich, Germany, 31 Mar–1 Apr 2011

    Google Scholar 

  • Sjöberg LE, Bagherbandi M (2011) A method of estimating the Moho density contrast with a tentative application by EGM08 and CRUST2.0. Acta Geophys 59(3):502–525

    Article  Google Scholar 

  • Stratford W, Thybo H, Faleide JI, Olesen O, Tryggvason A (2009) New Moho map for onshore southern Norway. Geophys J Int 178:1755–1765

    Article  Google Scholar 

  • Sünkel H (1985) An isostatic Earth model. Report No. 367, Department of Geodetic Science and Surveying, The Ohio State University, Columbus

    Google Scholar 

  • Uieda L, Bomfim E, Braitenberg C, Molina E (2011) Optimal forward calculation method of the Marussi tensor due to a geologic structure at GOCE height. In: Proceedings GOCE user workshop 2011, ESA SP-696

    Google Scholar 

  • Zoback ML, Mooney WD (2003) Lithospheric buoyancy and continental intraplate stresses. Int Geol Rev 45:95–118

    Article  Google Scholar 

Download references

Acknowledgment

This work has been done in the framework of the ESA sponsored GOCE+ GeoExplore study as part of ESA’s Support to Science Element (STSE). We thank the editors Pascal Willis and Carla Braitenberg and three anonymous reviewers for their comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ebbing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ebbing, J., Bouman, J., Fuchs, M., Gradmann, S., Haagmans, R. (2014). Sensitivity of GOCE Gravity Gradients to Crustal Thickness and Density Variations: Case Study for the Northeast Atlantic Region. In: Marti, U. (eds) Gravity, Geoid and Height Systems. International Association of Geodesy Symposia, vol 141. Springer, Cham. https://doi.org/10.1007/978-3-319-10837-7_37

Download citation

Publish with us

Policies and ethics