Skip to main content

Contribution of Tide Gauges for the Determination of W0 in Canada

  • Conference paper
Gravity, Geoid and Height Systems

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 141))

Abstract

Canada plans to implement a geoid-based and GNSS-accessible vertical datum in 2013 in order to replace the existing Canadian Geodetic Vertical Datum of 1928, which no longer meets the needs of the modern user in terms of accuracy and accessibility. One of the primary concerns when realizing a geoid-based vertical datum is to determine the W 0 value that will represent the potential of the zero-height surface. Thus, the objective of this study is to determine W 0 by averaging the potential of points on the mean water surface by using Canadian tide gauge records and GOCE-based global geopotential models. The GOCE-based models are extended with the high-resolution gravity field model EGM2008 in order to assess the effect of the omission error on the computation of W 0. Similarly, the regional gravimetric geoid model CGG2010 is also used for the estimation of W 0 in order to assess the effect of higher frequency contributions of the gravity field, which are missing from the GOCE-based global geopotential models. Additionally, sea surface topography models are utilized in order to validate the W 0 results based on tide gauges and to estimate W 0 values for North America. The W 0 values obtained using Canadian tide gauges and high resolution gravity field and geoid models are not statistically different from the International Earth Rotation and Reference Systems Service 2010 global conventional value of 62,636,856.00 m2/s2.

International Symposium on Gravity, Geoid and Height Systems, 9–12 October 2012, Venice, Italy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ardalan AA, Safari A (2005) Global height datum unification: a new approach in gravity potential space. J Geod 79:512–523. doi:10.1007/s00190-005-0001-0

    Article  Google Scholar 

  • Ardalan A, Grafaren E, Kakkuri J (2002) National height datum, the Gauss-Listing geoid level value w0 and its time variation (Baltic Sea Level Project: epochs 1990.8, 1993.8, 1997.4). J Geod 76:1–28

    Article  Google Scholar 

  • Argus DE, Peltier WR (2010) Constraining models of postglacial rebound using space geodesy: a detailed assessment of model ICE-5G (VM2) and its relatives. Geophys J Int 181:697–723. doi:10.1111/j.1365-246X.2010.04562.x

    Google Scholar 

  • Bourgault D, Koutitonsky VG (1999) Real-time monitoring of the freshwater discharge at the head of the St. Lawrence Estuary. Atmosphere-Ocean 37(2):203–220

    Article  Google Scholar 

  • BurÅ¡a M, Kouba J, RadÄ›j K, True SA, Vatrt V, VojtĂ¬Å¡kovĂ¡ M (1998) Mean Earth’s equipotential surface from TOPEX/POSEIDON altimetry. Studia Geoph et Geod 42:459–466

    Article  Google Scholar 

  • Church JA, White NJ, Coleman R, Lambeck K, Mitrovica J (2004) Estimates of the regional distribution of sea level rise over the 1950-2000 period. J Clim 17:2609–2625

    Article  Google Scholar 

  • Dayoub N, Edwards SJ, Moore P (2012) The Gauss-Listing geopotential value W0 and its rate from altimetric mean sea level and GRACE. J Geod 86(9):681–694

    Article  Google Scholar 

  • Ekman M (1989) Impacts of geodynamic phenomena on systems for height and gravity. Bull Geod 63:281–296

    Article  Google Scholar 

  • ESA (2011) ESA GOCE earth explorers. http://www.esa.int/esaLP/ESAYEK1VMOC_LPgoce_0.html

  • Foreman MGG, Crawford WR, Cherniawsky JY, Galbraith J (2008) Dynamic ocean topography for the northeast Pacific and its continental margins. Geophys Res Lett 35(22): L22606. doi:10.1029/2008GL035152

  • Grafarend EW, Ardalan AA (1997) W0: an estimate in the Finnish Height Datum N60, epoch 1993.4 from twenty-five GPS points on the Baltic Sea Level Project. J Geod 71:673–679

    Article  Google Scholar 

  • Hirt C, Kuhn M, Featherstone WE, Göttl F (2012) Topographic/isostatic evaluation for new-generation GOCE gravity field models. J Geophys Res. doi:10.1029/2011JB00878

    Google Scholar 

  • Huang J, VĂ©ronneau M (2013) Canadian gravimetric geoid model 2010. J Geod 87(8):771–790. doi:10.1007/s00190-013-0645-0

  • Ince ES, Sideris MG, Huang J, VĂ©ronneau M (2012) Assessment of the GOCE-based global gravity models in Canada. Geomatica 66(2):125–145

    Article  Google Scholar 

  • Mazzotti S, Jones C, Thomson RE (2008) Relative and absolute sea level rise in western Canada and northwestern United States from a combined tide gauge-GPS analysis. J Geophys Res. doi:10.1029/2008JC004835

    Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res. doi:10.1029/2011JB008916

    Google Scholar 

  • Petit G, Luzum B (2010) IERS convention 2010. IERS Technical Note 36, Verlag den Bundesamtes fĂ¼r Kartographie und Geodäsie, Frankfurt

    Google Scholar 

  • Rangelova E, van der Wal W, Sideris MG (2012) How significant is the dynamic component of the North American vertical datum? J Geod Sci 2(4):281–289

    Google Scholar 

  • SĂ¡nchez L (2009) Strategy to establish a global vertical reference system. In: Drewes H (ed) Geodetic reference frames. International association of geodesy symposia, vol 134, pp 273–278. doi:10.1007/978-3-642-00860-3_42

  • Snay R, Cline M, Dillinger W, Foote R, Hilla S, Kass W et al (2007) Using global positioning-system derived crustal velocities to estimate rates of absolute sea level change from North America tide gauge records. J Geophys Res. doi:10.1029/2006JB004606

    Google Scholar 

  • Thompson KR, Demirov E (2006) Skewness of sea level variability of the world’s oceans. J Geophys Res. doi:10.1029/2004JC002839

    Google Scholar 

  • Yonghai C, Jiancheng L (2012) Determination of mean sea level geopotential from global gravity field model and global sea surface height model. J Geod Geodyn 32(5):58–62

    Google Scholar 

Download references

Acknowledgements

This work is a contribution to the ESA STSE—GOCE + Height System Unification with GOCE project, and was also supported by NSERC and the GEOIDE Network of Centres of Excellence. The late D.G. Wright is acknowledged for the development of the regional Atlantic SST model used in this study. P. Woodworth and C. Hughes `from NOC Liverpool' are also acknowledged for providing the global SST models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hayden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hayden, T., Rangelova, E., Sideris, M.G., VĂ©ronneau, M. (2014). Contribution of Tide Gauges for the Determination of W0 in Canada. In: Marti, U. (eds) Gravity, Geoid and Height Systems. International Association of Geodesy Symposia, vol 141. Springer, Cham. https://doi.org/10.1007/978-3-319-10837-7_31

Download citation

Publish with us

Policies and ethics