Advertisement

Multidimensional Collaborative Lossless Visualization: Experimental Study

  • Vladimir Grishin
  • Boris Kovalerchuk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8683)

Abstract

The major challenges in visualization of large n-D data in 2-D are in supporting the most efficient and fast usage of abilities of users to analyze visualized information and to extract patterns visually. This paper describes experimental results of a collaborative approach to support n-D data visualization based on new lossless n-D visualization methods (collocated paired coordinates and their stars modifications) that we propose. This is a second part of the work. The first part presented in a separate paper is focused on description of the algorithms.

Keywords

Collaborative multi-dimensional data visualization stars visualization experiment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grishin, V.: Pictorial Analysis of Experimental Data. pp. 1–237 Nauka Publ. Moscow (1982) Google Scholar
  2. 2.
    Kovalerchuk, B.: Visualization of multidimensional data with collocated paired coordinates and general line coordinates. In: Proc. SPIE 9017, Visualization and Data Analysis, 90170I (2014) Google Scholar
  3. 3.
    Grishin, V., Sula, A., Ulieru, M.: Pictorial analysis: a multi-resolution data visualization approach for monitoring and diagnosis of complex systems. Int. Journal of Information Sciences 152, 1–24 (2003)CrossRefGoogle Scholar
  4. 4.
    Kovalerchuk, B., Delizy, F., Riggs, L., Vityaev, E.: Visual discovery in multivariate binary data. In: Proc. SPIE 7530, Visualization and Data Analysis, 75300B, p. 12 (2010) Google Scholar
  5. 5.
    Ward, M., Grinstein, G., Keim, D.: Interactive Data Visualization: foundations, techniques, and applications, pp. 1–496. A K Peters, Ltd., Natick (2010) Google Scholar
  6. 6.
    Bertini, E., Tatu, A., Keim, D.: Quality metrics in high-dimensional data visualization: An overview and systematization. IEEE Tr. on Visualization and Computer Graphics (2011)Google Scholar
  7. 7.
    Grishin, V., Kovalerchuk, B.: Stars advantages vs. Parallel Coordinates (shape perception as visualization reserve. In: Proc. SPIE 9017, Visualization and Data Analysis 2014, 90170I (2014) Google Scholar
  8. 8.
    Kovalerchuk, B., Schwing, J. (eds.): Visual and Spatial Analysis. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Kovalerchuk, B., Balinsky, A.: Visual Data Mining and Discovery in Multivariate Data Using Monotone n-D Structure. In: Wolff, K.E., Palchunov, D.E., Zagoruiko, N.G., Andelfinger, U. (eds.) KONT 2007 and KPP 2007. LNCS, vol. 6581, pp. 297–313. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Kovalerchuk, B., Grishin, V.: Collaborative lossless visualization of n-D data by collocated paired coordinates. In: CDVE 2014 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vladimir Grishin
    • 1
  • Boris Kovalerchuk
    • 2
  1. 1.View Trends InternationalDracutUSA
  2. 2.Dept. of Computer ScienceCentral Washington UniversityEllensburgUSA

Personalised recommendations