Collaborative Lossless Visualization of n-D Data by Collocated Paired Coordinates

  • Boris Kovalerchuk
  • Vladimir Grishin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8683)


The collaborative approach is a natural way to enhance visualization and visual analytics methods. This paper continues our long-term efforts on enhancement of visualization and visual analytics methods. The major challenges in visualization of large n-D data in 2-D are not only in providing lossless visualization by using sophisticated computational methods, but also in supporting the most efficient and fast usage of abilities of users (agents) to analyze visualized information and to extract patterns visually. This paper describes a collaborative approach to support n-D data visualization based on new lossless n-D visualization methods that we propose. The second part of this work presented in a separate paper is focused on experimental results of cooperative n-D data visualization described in this paper.


Collaborative multi-dimensional data visualization Lossless visualization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grishin, V.: Pictorial Analysis of Experimental Data. pp. 1–237 Nauka Publ. Moscow (1982)Google Scholar
  2. 2.
    Kovalerchuk, B.: Visualization of multidimensional data with collocated paired coordinates and general line coordinates. In: Proc. SPIE 9017, Visualization and Data Analysis, 90170I (2014)Google Scholar
  3. 3.
    Grishin, V., Sula, A., Ulieru, M.: Pictorial analysis: a multi-resolution data visualization approach for monitoring and diagnosis of complex systems. Int. Journal of Information Sciences 152, 1–24 (2003)CrossRefGoogle Scholar
  4. 4.
    Kovalerchuk, B., Delizy, F., Riggs, L., Vityaev, E.: Visual discovery in multivariate binary data. In: Proc. SPIE 7530, Visualization and Data Analysis, 75300B, p. 12 (2010)Google Scholar
  5. 5.
    Ward, M., Grinstein, G., Keim, D.: Interactive Data Visualization: foundations, techniques, and applications, pp. 1–496. A K Peters, Ltd., Natick (2010)Google Scholar
  6. 6.
    Bertini, E., Tatu, A., Keim, D.: Quality metrics in high-dimensional data visualization: An overview and systematization. IEEE Tr. on Visualization and Computer Graphics (2011)Google Scholar
  7. 7.
    Grishin, V., Kovalerchuk, B.: Stars advantages vs. Parallel Coordinates (shape perception as visualization reserve. In: Proc. SPIE 9017, Visualization and Data Analysis 2014, 90170I (2014)Google Scholar
  8. 8.
    Kovalerchuk, B., Schwing, J. (eds.): Visual and Spatial Analysis. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Kovalerchuk, B., Balinsky, A.: Visual Data Mining and Discovery in Multivariate Data Using Monotone n-D Structure. In: Wolff, K.E., Palchunov, D.E., Zagoruiko, N.G., Andelfinger, U. (eds.) KONT 2007 and KPP 2007. LNCS, vol. 6581, pp. 297–313. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Boris Kovalerchuk
    • 1
  • Vladimir Grishin
    • 2
  1. 1.Dept. of Computer ScienceCentral Washington UniversityEllensburgUSA
  2. 2.View Trends InternationalDracutUSA

Personalised recommendations