Advertisement

Cloud Computing for Improving Integrity of Data from Biotechnological Plant

  • Dariusz Choiński
  • Artur Wodołażski
  • Piotr Skupin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8683)

Abstract

The extraction of necessary information and its interpretation in the case of biotechnological processes may be a difficult task. This is due to the fact that the large amounts of available data are often a combination of on-line and off-line measurements with a hierarchical structure. Moreover, the measurement data can be geographically dispersed and stored in the different types of databases. To facilitate the extraction of the most significant information on the biological process, the paper presents a model of integration of the hierarchical database with the relational one in the cloud computing environment. The relational database model will allow the less experienced bioprocess designers to find the answers to specific questions. The use of cloud services ensures sufficient data storage space and ease of data management. In turn, data integrity in the cloud environment is realized by means of DataBase Management System with Open DataBase Connectivity drivers.

Keywords

cloud computing relational database referential integrity biotechnological process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Choinski, D., Metzger, M., Nocon, W., Polaków, G., Rozalowska, B., Skupin, P.: Cooperative Access to Hierarchical Data from Biotechnological Pilot-Plant. In: Luo, Y. (ed.) CDVE 2012. LNCS, vol. 7467, pp. 171–178. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Choinski, D., Metzger, M., Noco, W.: Cooperative Visualization Based on Agent Voting. In: Luo, Y. (ed.) CDVE 2011. LNCS, vol. 6874, pp. 166–169. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Doan, X., Srinivasan, R., Bapat, P.M., Wangikar, P.P.: Detection of phase shifts in batch fermentation via statistical analysis of the online measurements: a case study with rifamycin B fermentation, J. Biotechnol. 132, 156–166 (2007)Google Scholar
  4. 4.
    Warth, B., Rajkai, G., Mandenius, C.F.: Evaluation of software sensors for on-line estimation of culture conditions in an Escherichia coli cultivation expressing a recombinant protein. J. Biotechnol. 147, 37–45 (2010)CrossRefGoogle Scholar
  5. 5.
    Undey, C., Ertunc, S., Mistretta, T., Looze, B.: Applied advanced process analytics in biopharmaceutical manufacturing: Challenges and prospects in real-time monitoring and control. J. Process. Control 20, 1009–1018 (2010)CrossRefGoogle Scholar
  6. 6.
    Metzger, M.: Fast-mode real-time simulator for the wastewater treatment process. Water Sci. Technol. 30, 191–197 (1994)Google Scholar
  7. 7.
    Skupin, P., Metzger, M.: Cooperative Operating Control for Induction or Elimination of Self-sustained Oscillations in CSTB. In: Luo, Y. (ed.) CDVE 2011. LNCS, vol. 6874, pp. 66–73. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Choinski, D., Metzger, M., Nocon, W., Polakow, G.: Cooperative Validation in Distributed Control Systems Design. In: Luo, Y. (ed.) CDVE 2007. LNCS, vol. 4674, pp. 280–289. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for data storage security in cloud computing. In: Proceedings of the 29th Conference on Information Communications, pp. 525–533. IEEE Press, Piscataway (2010)Google Scholar
  10. 10.
    Wu, J., Ping, L., Ge, X., Wang, Y., Fu, J.: Cloud Storage as the Infrastructure of Cloud Computing. In: International Conference Intelligent Computing and Cognitive Informatics, pp. 380–383. IEEE, Kuala Lumpur (2010)CrossRefGoogle Scholar
  11. 11.
    Pretorius, I.S., Du Toit, M., Van Rensburg, P.: Designer yeasts for the fermentation industry of the 21st century. Food Technol. Biotechnol. 41, 3–10 (2003)Google Scholar
  12. 12.
    Rani, K., Rao, V.: Control of fermenters – a review. Bioprocess Eng. 21, 77–88 (1999)CrossRefGoogle Scholar
  13. 13.
    Parulekar, S.J., Semones, G.B., Rolf, M.J., Lievense, J.C., Lim, H.C.: Induction and elimination of oscillations in continuous cultures of Saccharomyces Cerevisiae. Biotechnol. Bioeng. 28, 700–710 (1986)CrossRefGoogle Scholar
  14. 14.
    Balakrishnan, A., Yang, R.Y.K.: Self-forcing of a chemostat with self-sustained oscillations for productivity enhancement. Chem. Eng. Commun. 189, 1569–1585 (2002)CrossRefGoogle Scholar
  15. 15.
    Skupin, P.: Simulation approach for detection of the self-sustained oscillations in continuous culture. In: 11th WSEAS International Conference on Mathematics and Computers in Biology and Chemistry, Iasi, pp. 80–85 (2010)Google Scholar
  16. 16.
    Bai, F.W., Chen, L.J., Anderson, W.A., Moo–Young, M.: Parameter oscillation attenuation and mechanism exploration for continuous VHG ethanol fermentation. Biotechnol. Bioeng. 102, 113–121 (2009)CrossRefGoogle Scholar
  17. 17.
    Sonnleitner, B., Kappeli, O.: Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis. Biotechnol. Bioeng. 28, 927–937 (1986)CrossRefGoogle Scholar
  18. 18.
    Buyya, R., Broberg, J., Goscinsky, A.: Cloud Computing: Principles and Paradigms. John Wiley and Sons (2011)Google Scholar
  19. 19.
    Coburn, N., Larson, P.A., Martin, P., Slonim, J.: Cords multidatabase project: Research and prototype overview. In: the Conference of the Centre for Advanced Studies on Collaborative Research, pp. 767–778. IBM, Toronto (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dariusz Choiński
    • 1
  • Artur Wodołażski
    • 2
  • Piotr Skupin
    • 1
  1. 1.Faculty of Automatic Control, Electronics and Computer ScienceSilesian University of TechnologyGliwicePoland
  2. 2.Central Mining InstituteKatowicePoland

Personalised recommendations