Advertisement

Collaborative Visual Analysis of Sentiment in Twitter Events

  • Michael Brooks
  • John J. Robinson
  • Megan K. Torkildson
  • Sungsoo (Ray) Hong
  • Cecilia R. Aragon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8683)

Abstract

Researchers across many fields are increasingly using data from social media sites to address questions about individual and group social behaviors. However, the size and complexity of these data sets challenge traditional research methods; many new tools and techniques have been developed to support research in this area. In this paper, we present our experience designing and evaluating Agave, a collaborative visual analysis system for exploring events and sentiment over time in large tweet data sets. We offer findings from evaluating Agave with researchers experienced with social media data, focusing on how users interpreted sentiment labels shown in the interface and on the value of collaboration for stimulating exploratory analysis.

Keywords

Collaboration visual analytics social media sentiment Twitter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. Journal of Computational Science 2(1), 1–8 (2011)CrossRefGoogle Scholar
  2. 2.
    De Choudhury, M., Counts, S., Horvitz, E.: Major life changes and behavioral markers in social media: case of childbirth. In: Proc. CSCW (2013)Google Scholar
  3. 3.
    De Choudhury, M., Gamon, M., Counts, S., Horvitz, E.: Predicting Depression via Social Media. In: Proc. ICWSM (2013)Google Scholar
  4. 4.
    Diakopoulos, N., Naaman, M., Kivran-Swaine, F.: Diamonds in the rough: Social media visual analytics for journalistic inquiry. In: Proc. VAST (2010)Google Scholar
  5. 5.
    Dodds, P.S., Harris, K.D., Kloumann, I.M., Bliss, C.A., Danforth, C.M.: Temporal patterns of happiness and information in a global social network: hedonometrics and Twitter. PloS one 6(12), e26752 (2011)Google Scholar
  6. 6.
    Dörk, M., Gruen, D., Williamson, C., Carpendale, S.: A visual backchannel for large-scale events. In: Proc. InfoVis (2010)Google Scholar
  7. 7.
    Dourish, P., Chalmers, M.: Running out of space: Models of information navigation. In: Proc. HCI (1994)Google Scholar
  8. 8.
    Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. Tech. rep., Stanford University (2009)Google Scholar
  9. 9.
    Guzman, J., Poblete, B.: On-line relevant anomaly detection in the Twitter stream: an efficient bursty keyword detection model. In: Proc. KDD Workshop on Outlier Detection and Description (2013)Google Scholar
  10. 10.
    Heer, J., Agrawala, M.: Design considerations for collaborative visual analytics. Information Visualization 7(1), 49–62 (2008)CrossRefGoogle Scholar
  11. 11.
    Heer, J., Viégas, F.B., Wattenberg, M.: Voyagers and voyeurs: supporting asynchronous collaborative information visualization. In: Proc. CHI (2007)Google Scholar
  12. 12.
    Kivran-Swaine, F., Naaman, M.: Network properties and social sharing of emotions in social awareness streams. In: Proc. CSCW (2011)Google Scholar
  13. 13.
    Marcus, A., Bernstein, M.S., Badar, O., Karger, D.R., Madden, S., Miller, R.C.: TwitInfo: aggregating and visualizing microblogs for event exploration. In: Proc. CHI (2011)Google Scholar
  14. 14.
    Quercia, D., Ellis, J., Capra, L., Crowcroft, J.: Tracking “gross community happiness” from tweets. In: Proc. CSCW (2012)Google Scholar
  15. 15.
    Wattenberg, M., Kriss, J.: Designing for social data analysis. IEEE TVCG 12(4), 549–557 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael Brooks
    • 1
  • John J. Robinson
    • 1
  • Megan K. Torkildson
    • 1
  • Sungsoo (Ray) Hong
    • 1
  • Cecilia R. Aragon
    • 1
  1. 1.University of WashingtonSeattleUSA

Personalised recommendations