Skip to main content

Highly Correlated Fermi Liquid in Heavy-Fermion Metals: The Scaling Behavior

  • Chapter
  • First Online:
  • 1679 Accesses

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 182))

Abstract

In this chapter we show how the FCQPT theory works. We do that on the base of experimentally relevant examples. Namely, as noted in the Introduction (Chap. 1), the challenge for the theories is to explain the scaling behavior of the normalized effective mass \(M^*_N(y)\) displayed in Fig. 1.3. The theories analyzing only the critical exponents characterizing \(M^*_N(y)\) at \(y\gg 1\) consider only a part of the problem. In this section we analyze and derive the scaling behavior of the normalized effective mass near QCP as reported in Fig. 1.3. We start with describing magnetic field dependence of the quasiparticle effective mass in Sect. 6.1. Quasiparticle damping and the temperature dependence of the effective mass is considered in Sect. 6.2. In Sect. 6.4 we study the energy scales and the general properties of the phase diagrams of strongly correlated Fermi systems, including HF metals like YbRh\(_2\)Si\(_2\), and consider the evolution of these diagrams under the application of negative/positive pressure. We have observed that at sufficiently high temperatures outside the AFM phase the transition temperature follows almost linear B-dependence, coinciding with the transition temperature, induced by the presence of FC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, part 2: Theory of Condensed State (Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt, 1980)

    Google Scholar 

  2. V.R. Shaginyan, JETP Lett. 79, 286 (2004)

    Article  ADS  Google Scholar 

  3. J.W. Clark, V.A. Khodel, M.V. Zverev, Phys. Rev. B 71, 012401 (2005)

    Article  ADS  Google Scholar 

  4. V.R. Shaginyan, A.Z. Msezane, M.Y. Amusia, Phys. Lett. A 338, 393 (2005)

    Article  ADS  Google Scholar 

  5. V.R. Shaginyan, JETP Lett. 77, 104 (2003)

    Article  ADS  Google Scholar 

  6. L.D. Landau, E.M. Lifshitz, Statistical Physics (Elsevier, Oxford, 1980)

    Google Scholar 

  7. V.R. Shaginyan, JETP Lett. 80, 263 (2004)

    Article  ADS  Google Scholar 

  8. V.A. Khodel, V.R. Shaginyan, V.V. Khodel, Phys. Rep. 249, 1 (1994)

    Article  ADS  Google Scholar 

  9. V.A. Khodel, V.R. Shaginyan, Nucl. Phys. A 555, 33 (1993)

    Article  ADS  Google Scholar 

  10. V.A. Khodel, V.R. Shaginyan, P. Schuk, JETP Letters 63, 752 (1996)

    Article  ADS  Google Scholar 

  11. J. Dukelsky, V. Khodel, P. Schuck, V. Shaginyan, Z. Phys. 102, 245 (1997)

    Article  Google Scholar 

  12. V.A. Khodel, V.R. Shaginyan, in Condensed Matter Theories, vol. 12, ed. by J. Clark, V. Plant (Nova Science Publishers Inc., New York, 1997), p. 221

    Google Scholar 

  13. V.A. Khodel, J.W. Clark, M.V. Zverev, Phys. Rev. B 78, 075120 (2008)

    Article  ADS  Google Scholar 

  14. V.A. Khodel, JETP Lett. 86, 721 (2007)

    Article  ADS  Google Scholar 

  15. J.W. Clark, V.A. Khodel, M.V. Zverev, V.M. Yakovenko, Phys. Rep. 391, 123 (2004)

    Article  ADS  Google Scholar 

  16. V.R. Shaginyan, JETP Lett. 77, 178 (2003)

    Article  ADS  Google Scholar 

  17. P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, K.T.T. Tayama, O. Trovarelli, F. Steglich, Phys. Rev. Lett. 89, 056402 (2002)

    Article  ADS  Google Scholar 

  18. J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O. Trovarelli, C. Geibel, F. Steglich, C. Pépin, P. Coleman, Nature 424, 524 (2003)

    Google Scholar 

  19. T. Shibauchi, L. Krusin-Elbaum, M. Hasegawa, Y. Kasahara, R. Okazaki, Y. Matsuda, Proc. Natl. Acad. Sci. USA 105, 7120 (2008)

    Article  ADS  Google Scholar 

  20. N. Oeschler, S. Hartmann, A. Pikul, C. Krellner, C. Geibel, F. Steglich, Physica B 403, 1254 (2008)

    Article  ADS  Google Scholar 

  21. P. Gegenwart, T. Westerkamp, C. Krellner, Y. Tokiwa, S. Paschen, C. Geibel, F. Steglich, E. Abrahams, Q. Si, Science 315, 969 (2007)

    Google Scholar 

  22. P. Gegenwart, T. Westerkamp, C. Krellner, M. Brando, Y. Tokiwa, C. Geibel, F. Steglich, Physica B 403, 1184 (2008)

    Article  ADS  Google Scholar 

  23. Y. Tokiwa, T. Radu, C. Geibel, F. Steglich, P. Gegenwart, Phys. Rev. Lett. 102, 066401 (2009)

    Article  ADS  Google Scholar 

  24. V.R. Shaginyan, M.Y. Amusia, A.Z. Msezane, K.G. Popov, Phys. Rep. 492, 31 (2010)

    Article  ADS  Google Scholar 

  25. S.A. Artamonov, Y.G. Pogorelov, V.R. Shaginyan, JETP Lett. 68, 942 (1998)

    Article  ADS  Google Scholar 

  26. M.V. Zverev, M. Baldo, J. Phys. Condens. Matter 11, 2059 (1999)

    Article  ADS  Google Scholar 

  27. G.E. Volovik, JETP Lett. 53, 222 (1991)

    ADS  Google Scholar 

  28. G.E. Volovik, in Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, ed. by W.G. Unruh, R. Schutzhold. Springer Lecture Notes in Physics, vol. 718 (Springer, Orlando, 2007), p. 31.

    Google Scholar 

  29. V.A. Khodel, M.V. Zverev, V.M. Yakovenko, Phys. Rev. Lett. 95, 236402 (2005)

    Article  ADS  Google Scholar 

  30. V.R. Shaginyan, M.Y. Amusia, K.G. Popov, Phys. Lett. A 373, 2281 (2009)

    Article  ADS  Google Scholar 

  31. V.R. Shaginyan, Physics of Atomic Nuclei 74, 1107 (2011)

    Article  ADS  Google Scholar 

  32. V.A. Khodel, J.W. Clark, M.V. Zverev, Physics of Atomic Nuclei 74, 1237 (2011)

    Article  ADS  Google Scholar 

  33. D. Takahashi, S. Abe, H. Mizuno, D. Tayurskii, K. Matsumoto, H. Suzuki, Y. Onuki, Phys. Rev. B 67, 180407(R) (2003)

    Article  ADS  Google Scholar 

  34. V.R. Shaginyan, A.Z. Msezane, K.G. Popov, J.W. Clark, M.V. Zverev, V.A. Khodel, JETP Lett. 96, 397 (2012)

    Article  ADS  Google Scholar 

  35. M. Brando, L. Pedrero, T. Westerkamp, C. Krellner, P. Gegenwart, C. Geibel, F. Steglich, Phys. Status Solidi B 459, 285 (2013)

    Google Scholar 

  36. V.R. Shaginyan, A.Z. Msezane, K.G. Popov, G.S. Japaridze, V.A. Khodel, Europhys. Lett. 106, 37001 (2014)

    Article  ADS  Google Scholar 

  37. Y. Tokiwa, P. Gegenwart, C. Geibel, F. Steglich, J. Phys. Soc. Jpn. 78, 123708 (2009)

    Article  ADS  Google Scholar 

  38. S. Friedemann, T. Westerkamp, M. Brando, N. Öeschler, S. Wirth, P. Gegenwart, C. Krellner, C. Geibel, F. Steglich, Nat. Phys. 5, 465 (2009)

    Google Scholar 

  39. J. Custers, P. Gegenwart, S. Geibel, F. Steglich, P. Coleman, S. Paschen, Phys. Rev. Lett. 104, 186402 (2010)

    Article  ADS  Google Scholar 

  40. M.Y. Amusia, V.R. Shaginyan, Contrib. Plasma Phys. 53, 721 (2013)

    Article  ADS  Google Scholar 

  41. D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. Lett. 112, 070403 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miron Ya. Amusia .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amusia, M.Y., Popov, K.G., Shaginyan, V.R., Stephanovich, V.A. (2015). Highly Correlated Fermi Liquid in Heavy-Fermion Metals: The Scaling Behavior. In: Theory of Heavy-Fermion Compounds. Springer Series in Solid-State Sciences, vol 182. Springer, Cham. https://doi.org/10.1007/978-3-319-10825-4_6

Download citation

Publish with us

Policies and ethics