Skip to main content

Asymmetric Conductivity of Strongly Correlated Compounds

  • Chapter
  • First Online:
Theory of Heavy-Fermion Compounds

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 182))

  • 1665 Accesses

Abstract

In this chapter, we show that the FC solutions for distribution function \(n_0(\mathbf{p})\) generate NFL behavior, and violate the particle-hole symmetry inherent in LFL. This, in turn, yields dramatic changes in transport properties of HF metals, particularly, the differential conductivity becomes asymmetric. As it is demonstrated in Sect. 3.1, Fermi quasiparticles can behave as Bose one. Such a state is viewed as possessing the supersymmetry (SUSY) that interchanges bosons and fermions eliminating the difference between them. In the case of asymmetrical conductivity it is the emerging SUSY that violates the time invariance symmetry. Thus, restoring one important symmetry, the FC state violates another essential symmetry. As is shown in Sect. 5.3, the LFL behavior is restored under the application of magnetic field. Therefore, we expect that in magnetic fields SUSY is violated and the asymmetric part of the differential conductivity is suppressed. Scanning tunneling microscopy and point-contact spectroscopy closely related to the Andreev reflection are sensitive to both the density of states and the probability of the population of quasiparticle states determined by the function \(n(\mathbf{p},T)\) [1, 2]. Thus, the above experimental techniques are ideal tools for studying specific features of the NFL behavior of HF metals and high-\(T_c\) superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Deutscher, Rev. Mod. Phys. 77, 109 (2005)

    Article  ADS  Google Scholar 

  2. A.F. Andreev, Zh Eksp, Teor. Fiz. 46, 1823 (1964)

    Google Scholar 

  3. A.M. Zagoskin, Quantum Theory of Many-Body Systems (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  4. V.R. Shaginyan, M.Y. Amusia, K.G. Popov, Phys. Usp. 50, 563 (2007)

    Article  ADS  Google Scholar 

  5. V.R. Shaginyan, K.G. Popov, Phys. Lett. A 361, 406 (2007)

    Article  ADS  Google Scholar 

  6. V.R. Shaginyan, JETP Lett. 81, 222 (2005)

    Article  ADS  Google Scholar 

  7. V.R. Shaginyan, K.G. Popov, V.A. Stephanovich, E.V. Kirichenko, J. Alloy. Compd. 442, 29 (2007)

    Article  Google Scholar 

  8. W.K. Park, L.H. Greene, J.L. Sarrao, J.D. Thompson, Phys. Rev. B 72, 052509 (2005)

    Article  ADS  Google Scholar 

  9. G. Pristá\(\breve{{\rm s}}\), M. Reiffers, E. Bauer, A.G.M. Jansen, D.K. Maude, Phys. Rev. B 78, 235108 (2008)

    Google Scholar 

  10. L.N. Oliveira, E.K.U. Gross, W. Kohn, Phys. Rev. Lett. 60, 2430 (1988)

    Article  ADS  Google Scholar 

  11. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. D.R. Tilley, J. Tilley, Superfluidity and Superconductivity (Hilger, Bristol, 1985)

    Google Scholar 

  13. P.W. Anderson, N.P. Ong, arXiv:0405518. pp. 1–5 (2004)

  14. S.H. Pan, J.P. O’Neal, R.L. Badzey, C. Chamon, H. Ding, J.R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A.K. Gupta, K.W. Ng, E.W. Hudson, K.M. Lang, J.C. Davis, Nature 413, 282 (2001)

    Article  ADS  Google Scholar 

  15. S. Piano, F. Bobba, A.D. Santis, F. Giubileo, A. Scarfato, A.M. Cucolo, J. Phys: Conf. Ser. 43, 1123 (2006)

    ADS  Google Scholar 

  16. V.R. Shaginyan, G.S. Japaridze, M.Y. Amusia, A.Z. Msezane, K.G. Popov, Europhys. Lett. 94, 69001 (2011)

    Article  ADS  Google Scholar 

  17. M. Sozzi, Discrete Symmetries and CP Violation: From Experiment to Theory (Oxford University Press, Oxford, 2008)

    Google Scholar 

  18. G.C. Branco, L. Lavoura, J.P. Silva, CP Violation (Clarendon Press, Oxford, 1999)

    Google Scholar 

  19. D.J. Griffiths, Introduction to Elementary Particles (Wiley, New York, 1987)

    Book  Google Scholar 

  20. V.R. Shaginyan, M.Y. Amusia, A.Z. Msezane, K.G. Popov, Phys. Rep. 492, 31 (2010)

    Article  ADS  Google Scholar 

  21. V.A. Khodel, V.R. Shaginyan, JETP Lett. 51, 553 (1990)

    ADS  Google Scholar 

  22. V.A. Khodel, V.R. Shaginyan, V.V. Khodel, Phys. Rep. 249, 1 (1994)

    Article  ADS  Google Scholar 

  23. G.E. Volovik, arXiv:1012.0905v3. (2010)

  24. G.E. Volovik, J. Low Temp. Phys. 110, 23 (1998)

    Article  ADS  Google Scholar 

  25. G.E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miron Ya. Amusia .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amusia, M.Y., Popov, K.G., Shaginyan, V.R., Stephanovich, V.A. (2015). Asymmetric Conductivity of Strongly Correlated Compounds. In: Theory of Heavy-Fermion Compounds. Springer Series in Solid-State Sciences, vol 182. Springer, Cham. https://doi.org/10.1007/978-3-319-10825-4_13

Download citation

Publish with us

Policies and ethics