Skip to main content

Quantum Many-Body Dynamics of Trapped Bosons with the MCTDHB Package: Towards New Horizons with Novel Physics

  • Conference paper
  • First Online:
Book cover High Performance Computing in Science and Engineering ‘14

Abstract

The MCTDHB package has been applied to study the physics of trapped interacting many-boson systems by solving the underlying time-dependent (as well as the time-independent) many-boson Schrödinger equation. Here we report on four studies where novel physical ideas and phenomena have been proposed and discovered: (a) Universality of the fragmentation dynamics in double wells – at long propagation times properties of the evolving system saturate to some asymptotic values; (b) Novel many-body spectral features in trapped systems – the newly-developed linear-response theory on-top of MCTDHB predicts the existence of low-lying excitations not described so far by the standard theory even in harmonic potentials; (c) Efficient protocol to control the many-particle tunneling dynamics to open space, by combining the effects of a threshold potential and inter-particle interaction; (d) Physics behind the formation of patterns in the ground states of trapped bosonic systems with strong finite- and long-range repulsive interactions and the origin of their dynamical stability. From the perspective of the required computational resources and numerical algorithms applied, each of these numerically-demanding studies has challenged different aspects of computational physics and mathematics: Long-time propagation – stability of the numerical methods used to integrate the MCTDHB equations-of-motion; Control of the tunneling dynamics – a very detailed study where an interplay of the parameters controlling the decay by tunneling dynamics is accompanied by a long-time propagation on huge spatial grids, which are needed to simulate open systems; Excited states of many-body systems – construction and diagonalization of complex non-hermitian linear-response matrices; Finite- and long-range interactions in 1D, 2D, and 3D setups – efficient methods and techniques for evaluation of involved high-dimensional integrals. Implications and further perspectives and future plans are briefly discussed and addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aikawa, K., Frisch, A., Mark, M., Baier, S., Rietzler, A., Grimm, R., Ferlaino, F.: Bose-Einstein Condensation of Erbium. Phys. Rev. Lett. 108, 210401 (2012)

    Article  Google Scholar 

  2. Alon, O.E., Streltsov, A.I., Cederbaum, L.S.: Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems. Phys. Rev. A 77, 033613 (2008)

    Article  Google Scholar 

  3. Alon, O.E., Streltsov, A.I., Cederbaum, L.S.: Unified view on linear response of interacting identical and distinguishable particles from multiconfigurational time-dependent Hartree methods. J. Chem. Phys. 140, 034108 (2014)

    Article  Google Scholar 

  4. Astrakharchik, G.E., Girardeau, M.D.: Exact ground-state properties of a one-dimensional Coulomb gas. Phys. Rev. B 83, 153303 (2011)

    Article  Google Scholar 

  5. Baranov, M.A.: Theoretical progress in many-body physics with ultracold dipolar gases. Phys. Rep. 464, 71 (2008)

    Article  Google Scholar 

  6. B\(\check{\mathrm{r}}\) ezinová, I., Lode, A.U.J., Streltsov, A.I., Alon, O.E., Cederbaum, L.S., Burgdörfer, J.: Wave chaos as signature for depletion of a Bose-Einstein condensate. Phys. Rev. A 86, 013630 (2012)

    Google Scholar 

  7. B\(\check{\mathrm{r}}\) ezinová, I., Lode, A.U.J., Streltsov, A.I., Cederbaum, L.S., Alon, O.E., Collins, L.A., Schneider, B.I., Burgdörfer, J.: Elastic scattering of a Bose-Einstein condensate at a potential landscape. J. Phys. Conf. Ser. 488, 012032 (2014)

    Google Scholar 

  8. bwGRiD, member of the German D-grid initiative, funded by the Ministry for Education and Research (Bundesministerium für Bildung und Forschung) and the Ministry for Science, Research and Arts Baden-Württemberg (Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg). http://www.bw-grid.de

  9. Castin, Y., Dum, R.: Low-temperature Bose-Einstein condensates in time-dependent traps: Beyond the U(1) symmetry-breaking approach. Phys. Rev. A 57, 3008 (1998)

    Article  Google Scholar 

  10. Comparat, D., Pillet, P.: Dipole blockade in a cold Rydberg atomic sample [Invited]. J. Opt. Soc. Am. B 6, A208 (2010)

    Article  Google Scholar 

  11. Cray XE6 cluster Hermit and NEC Nehalem cluster Luki at the High Performance Computing Center Stuttgart (HLRS). https://www.hlrs.de

  12. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Article  Google Scholar 

  13. Esry, B.D.: Hartree-Fock theory for Bose-Einstein condensates and the inclusion of correlation effects. Phys. Rev. A 55, 1147 (1997)

    Article  Google Scholar 

  14. Fetter, A.L., Walecka, J.D.A.: Quantum Theory of Many-Particle Systems. McGraw-Hill, New York (1971)

    Google Scholar 

  15. Gardiner, C.W.:Particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross-Pitaevskii equation for a highly condensed Bose gas. Phys. Rev. A 56, 1414 (1997)

    Google Scholar 

  16. Girardeau, M.: Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension. J. Math. Phys. 1, 516 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  17. Griesmaier, A., Werner, J., Hensler, S., Stuhler, J., Pfau, T.: Bose-Einstein Condensation of Chromium. Phys. Rev. Lett. 94, 160401 (2005)

    Article  Google Scholar 

  18. Grond, J., Schmiedmayer, J., Hohenester, U.: Optimizing number squeezing when splitting a mesoscopic condensate. Phys. Rev. A 79, 021603(R) (2009)

    Google Scholar 

  19. Grond, J., Betz, T., Hohenester, U., Mauser, N.J., Schmiedmayer, J., Schumm, T., New J.: Shapiro effect in atomchip-based bosonic Josephson junctions. Phys. 13, 065026 (2011)

    Google Scholar 

  20. Grond, J., Streltsov, A.I., Lode, A.U.J., Sakmann, K., Cederbaum, L.S., Alon, O.E.: Excitation spectra of many-body systems by linear response: General theory and applications to trapped condensates. Phys. Rev. A 88, 023606 (2013)

    Article  Google Scholar 

  21. Heimsoth, M., Hochstuhl, D., Creffield, C.E., Carr, L.D., Sols, F.: Effective Josephson dynamics in resonantly driven Bose-Einstein condensates. New J. Phys. 15, 103006 (2013)

    Article  Google Scholar 

  22. Henkel, N., Nath, R., Pohl, T.: Three-Dimensional Roton Excitations and Supersolid Formation in Rydberg-Excited Bose-Einstein Condensates. Phys. Rev. Lett. 104, 195302 (2010)

    Article  Google Scholar 

  23. Henkel, N., Cinti, F., Jain, P., Pupillo, G., Pohl, T.: Supersolid Vortex Crystals in Rydberg-Dressed Bose-Einstein Condensates. Phys. Rev. Lett. 108, 265301 (2012)

    Article  Google Scholar 

  24. Hochstuhl, D., Hinz, C.M., Bonitz, M.: Time-dependent multiconfiguration methods for the numerical simulation of photoionization processes of many-electron atoms. Eur. Phys. J. Spec. Top. 223, 177 (2014)

    Article  Google Scholar 

  25. Hofferberth, S., Lesanovsky, I., Fischer, B., Verdu, J., Schmiedmayer, J.: Radiofrequency-dressed-state potentials for neutral atoms. Nat. Phys. 2, 710 (2006)

    Article  Google Scholar 

  26. Hybrid computing complex K100 (Keldysh Institute of Applied Mathematics, RAS). http://www.kiam.ru

  27. Johnson, J.E., Rolston, S.L.: Interactions between Rydberg-dressed atoms. Phys. Rev. A 82, 033412 (2010)

    Article  Google Scholar 

  28. Köhler, T., Góral, K., Julienne, P.S.: Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311 (2006)

    Article  Google Scholar 

  29. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M., Pfau, T.: The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009)

    Article  Google Scholar 

  30. Leggett, A.J.: Bose-Einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys. 73, 307 (2001)

    Article  Google Scholar 

  31. Lode, A.U.J., Tsatsos, M.C.: The recursive multiconfigurational time-dependent Hartree for Bosons package. http://ultracold.org; http://r-mctdhb.org; http://schroedinger.org (2014)

  32. Lode, A.U.J., Sakmann, K., Alon, O.E., Cederbaum, L.S., Streltsov, A.I.: Numerically exact quantum dynamics of bosons with time-dependent interactions of harmonic type. Phys. Rev. A 86, 063606 (2012)

    Article  Google Scholar 

  33. Lode, A.U.J., Streltsov, A.I., Sakmann, K., Alon, O.E., Cederbaum, L.S.: How an interacting many-body system tunnels through a potential barrier to open space. Proc. Natl. Acad. Sci. USA 109, 13521 (2012)

    Article  Google Scholar 

  34. Lode, A.U.J., Sakmann, K., Doganov, R.A., Grond, J., Alon, O.E., Streltsov, A.I., Cederbaum, L.S.: Numerically-exact Schrödinger dynamics of closed and open many-boson systems with the MCTDHB package, HLRS report for 2012. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds.) High Performance Computing in Science and Engineering ’13: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2013. Springer, Heidelberg (2013)

    Google Scholar 

  35. Lode, A.U.J., Klaiman, S., Alon, O.E., Streltsov, A.I., Cederbaum, L.S.: Controlling the velocities and the number of emitted particles in the tunneling to open space dynamics. Phys. Rev. A 89, 053620 (2014)

    Article  Google Scholar 

  36. Lu, M., Burdick, N.Q., Youn, S.H., Lev, B.L.: Strongly Dipolar Bose-Einstein Condensate of Dysprosium. Phys. Rev. Lett. 107, 190401 (2011)

    Article  Google Scholar 

  37. Meyer, H.-D., Gatti, F., Worth, G.A. (eds.): Multidimensional Quantum Dynamics: MCTDH Theory and Applications. Wiley-VCH, Weinheim (2009)

    Google Scholar 

  38. Milburn, G.J., Corney, J., Wright, E.M., Walls, D.F.: Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential. Phys. Rev. A 55, 4318 (1997)

    Article  Google Scholar 

  39. Mueller, E.J., Ho, T.-L., Ueda, M., Baym, G.: Fragmentation of Bose-Einstein condensates. Phys. Rev. A 74, 033612 (2006)

    Article  Google Scholar 

  40. Nest, M., Klamroth, T., Saalfrank, P.: Unified view on multiconfigurational time-propagation for systems consisting of identical particles. J. Chem. Phys. 127, 154103 (2005)

    Google Scholar 

  41. Nozières, P.: Some Comments on Bose-Einstein Condensation. In: Griffin, A., Snoke, D.W., Stringari, S. (eds.) Bose-Einstein Condensation. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  42. Nozières, P., Saint James, D.: Particle vs. pair condensation in attractive Bose liquids. J. Phys. (Fr.) 43, 1133 (1982)

    Google Scholar 

  43. Olsen, J., Jørgensen, P.: Linear and nonlinear response functions for an exact state and for an MCSCF state. J. Chem. Phys. 82, 3235 (1985)

    Article  Google Scholar 

  44. Orzel, C., Tuchman, A.K., Fenselau, M.L., Yasuda, M., Kasevich, M.A.: Squeezed States in a Bose-Einstein Condensate. Science 291, 2386 (2001)

    Article  Google Scholar 

  45. Penrose, O., Onsager, L.: Bose-Einstein Condensation and Liquid Helium. Phys. Rev. 104, 576 (1956)

    Article  MATH  Google Scholar 

  46. Perrin, A., Chang, H., Krachmalnicoff, V., Schellekens, M., Boiron, D., Aspect, A., Westbrook, C.I.: Observation of Atom Pairs in Spontaneous Four-Wave Mixing of Two Colliding Bose-Einstein Condensates. Phys. Rev. Lett. 99, 150405 (2007)

    Article  Google Scholar 

  47. Proukakis, N.P., Gardiner, S.A., Davis, M.J., Szymanska, M.H. (eds.): Quantum Gases: Finite Temperature and Non-equilibrium Dynamics. Cold Atoms Series, vol. 1. Imperial College Press, London (2013)

    Google Scholar 

  48. Pupillo, G., Micheli, A., Boninsegni, M., Lesanovsky, I., Zoller, P.: Strongly Correlated Gases of Rydberg-Dressed Atoms: Quantum and Classical Dynamics. Phys. Rev. Lett. 104, 223002 (2010)

    Article  Google Scholar 

  49. Ruprecht, P.A., Edwards, M., Burnett, K., Clark, C.W.: Probing the linear and nonlinear excitations of Bose-condensed neutral atoms in a trap. Phys. Rev. A 54, 4178 (1996)

    Article  Google Scholar 

  50. Sakmann, K., Streltsov, A.I., Alon, O.E., Cederbaum, L.S.: Reduced density matrices and coherence of trapped interacting bosons. Phys. Rev. A 78, 023615 (2008)

    Article  Google Scholar 

  51. Sakmann, K., Streltsov, A.I., Alon, O.E., Cederbaum, L.S.: Exact Quantum Dynamics of a Bosonic Josephson Junction. Phys. Rev. Lett. 103, 220601 (2009)

    Article  Google Scholar 

  52. Sakmann, K., Streltsov, A.I., Alon, O.E., Cederbaum, L.S.: Universality of fragmentation in the Schrdinger dynamics of bosonic Josephson junctions. Phys. Rev. A 89, 023602 (2014)

    Article  Google Scholar 

  53. Smerzi, A., Fantoni, S., Giovanazzi, S., Shenoy, S.R.: Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates. Phys. Rev. Lett. 79, 4950 (1997)

    Article  Google Scholar 

  54. Spekkens, R.W., Sipe, J.E.: Spatial fragmentation of a Bose-Einstein condensate in a double-well potential. Phys. Rev. A 59, 3868 (1999)

    Article  Google Scholar 

  55. Streltsov, A.I.: Quantum systems of ultracold bosons with customized interparticle interactions. Phys. Rev. A 88, 041602(R) (2013)

    Google Scholar 

  56. Streltsov, A.I., Alon, O.E., Cederbaum, L.S.: General variational many-body theory with complete self-consistency for trapped bosonic systems. Phys. Rev. A 73, 063626 (2006)

    Article  Google Scholar 

  57. Streltsov, A.I., Alon, O.E., Cederbaum, L.S.: Role of Excited States in the Splitting of a Trapped Interacting Bose-Einstein Condensate by a Time-Dependent Barrier. Phys. Rev. Lett. 99, 030402 (2007)

    Article  Google Scholar 

  58. Streltsov, A.I., Sakmann, K., Lode, A.U.J., Alon, O.E., Cederbaum, L.S.: The multiconfigurational time-dependent Hartree for Bosons package, version 2.3, Heidelberg. http://MCTDHB.org (2013)

  59. Streltsova, O.I., Alon, O.E., Cederbaum, L.S., Streltsov, A.I.: Generic regimes of quantum many-body dynamics of trapped bosonic systems with strong repulsive interactions. Phys. Rev. A 89, 061602(R) (2014)

    Google Scholar 

  60. Stuhler, J., Griesmaier, A., Koch, T., Fattori, M., Pfau, T., Giovanazzi, S., Pedri, P., Santos, L.: Observation of Dipole-Dipole Interaction in a Degenerate Quantum Gas. Phys. Rev. Lett. 95, 150406 (2005)

    Article  Google Scholar 

  61. Viteau, M., Bason, M.G., Radogostowicz, J., Malossi, N., Ciampini, D., Morsch, O., Arimondo, E.: Rydberg Excitations in Bose-Einstein Condensates in Quasi-One-Dimensional Potentials and Optical Lattices. Phys. Rev. Lett. 107, 060402 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexej I. Streltsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Klaiman, S. et al. (2015). Quantum Many-Body Dynamics of Trapped Bosons with the MCTDHB Package: Towards New Horizons with Novel Physics. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘14. Springer, Cham. https://doi.org/10.1007/978-3-319-10810-0_5

Download citation

Publish with us

Policies and ethics