Skip to main content

Molecular Models for Cyclic Alkanes and Ethyl Acetate As Well As Surface Tension Data from Molecular Simulation

  • Conference paper
  • First Online:
Book cover High Performance Computing in Science and Engineering ‘14

Abstract

Thermodynamic data for most technically interesting systems are still scarce or even unavailable despite the large experimental effort that was invested over the last century into their measurement. This particularly applies to mixtures containing two or more components and systems under extreme conditions. In contrast to phenomenological methods, molecular modeling and simulation is based on a sound physical foundation and is therefore well suited for the prediction of such properties and processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eckl, B., Vrabec, J., Hasse, H.: Set of molecular models based on quantum mechanical ab initio calculations and thermodynamic data. J. Phys. Chem. B 112, 12710–12721 (2008)

    Article  Google Scholar 

  2. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., Montgomery, J.A.: General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993)

    Article  Google Scholar 

  3. Deublein, S., Eckl, B., Stoll, J., Lishchuk, S.V., Guevara-Carrion, G., Glass, C.W., Merker, T., Bernreuther, M., Hasse, H., Vrabec, J.: ms2: A molecular simulation tool for thermodynamic properties. Comput. Phys. Commun. 182, 2350–2367 (2011)

    Google Scholar 

  4. Merker, T., Vrabec, J., Hasse, H.: Engineering Molecular Models: Efficient parameterization procedure and cyclohexanol as case study. Soft Mater. 10, 3–25 (2012)

    Article  Google Scholar 

  5. Rowley, R.L., Wilding, W.V., Oscarson, J.L., Yang, Y., Zundel, N.A., Daubert, T.E., Danner, R.P.: DIPPR data compilation of pure compound properties. Design Institute for Physical Properties, AIChE, New York (2006)

    Google Scholar 

  6. Jones, J.E.: On the determination of molecular fields. I. from the variation of the viscosity of a gas with temperature. Proc. R. Soc. 106A, 441–462 (1924)

    Google Scholar 

  7. Jones, J.E.: On the determination of molecular fields. II. from the equation of state of a gas. Proc. R. Soc. 106A, 463–477 (1924)

    Article  Google Scholar 

  8. Allen, M.P., Tildesley, D.J.: Computer Simulations of Liquids. Oxford University Press, Oxford (1987)

    Google Scholar 

  9. Gray, C.G., Gubbins, K.E.: Theory of Molecular Fluids. Fundamentals, vol. 1. Clarendon Press, Oxford (1984)

    Google Scholar 

  10. Mulliken, R.S.: Criteria for the construction of good self–consistent–field molecular orbital wave functions, and the significance of LCAO–MO population analysis. J. Chem. Phys. 36, 3428–3439 (2004)

    Article  Google Scholar 

  11. Lorentz, H.A.: Über die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann. Phys. 12, 127–136 (1881)

    Article  MATH  MathSciNet  Google Scholar 

  12. Berthelot, D.: Sur le Mélange des Gaz. Compt. Rend. Ac. Sc. 126, 1703–1706 (1898)

    Google Scholar 

  13. Kamath, G., Robinson, J., Potoff, J.J.: Application of TraPPE–UA force field for determination of vapor–liquid equilibria of carboxylate esters. Fluid Phase Equilibr. 240, 46–55 (2006)

    Article  Google Scholar 

  14. Rowley, R., Wilding, W.V., Oscarson, J.L., Yang, Y., Zundel, N.A., Daubert, T.E., Danner, R.P.: DIPPR information and data evaluation manager for the design institute for physical properties. Version 5.0.2. Design Institute for Physical Properties, AIChE, New York (2011)

    Google Scholar 

  15. Dortmund Data Bank. Version 6.3.0.384. DDBST, Oldenburg (2010)

    Google Scholar 

  16. Stoll, J., Vrabec, J., Hasse, H.: A set of molecular models for carbon monoxide and halogenated hydrocarbons. J. Chem. Phys. 119, 11396–11407 (2003)

    Article  Google Scholar 

  17. Peng, D.-Y., Robinson, D.B.: A new two–constant equation of state. Ind. Eng. Chem. Fund. 15, 59–64 (1976)

    Article  MATH  Google Scholar 

  18. Ohta, T., Asano, H., Nagata, I.: Thermodynamic study of complex–formation in 4 binary–liquid mixtures containing chloroform. Fluid Phase Equilibr. 4, 105–114 (1980)

    Article  Google Scholar 

  19. Vrabec, J., Stoll, J., Hasse, H.: A Set of molecular models for symmetric quadrupolar fluids. J. Phys. Chem. B 105, 12126–12133 (2001)

    Article  Google Scholar 

  20. Windmann, T., Linnemann, M., Vrabec, J.: Fluid phase behavior of Nitrogen + Acetone and Oxygen + Acetone by molecular simulation, experiment and the Peng–Robinson equation of state. J. Chem. Eng. Data 59, 28–38 (2014)

    Article  Google Scholar 

  21. Niethammer, C., Becker, M., Bernreuther, M., Buchholz, M., Eckhardt, W., Heinecke, A., Werth, S., Bungartz, H.-J., Glass, C.W., Hasse, H., Vrabec, J., Horsch, M.: ls1 mardyn: The massively parallel molecular dynamics code for large systems. J. Chem. Theory Comput. 10, 4455–4464 (2014)

    Google Scholar 

  22. Janeček, J.: Long Range Corrections in Inhomogeneous Simulations. J. Phys. Chem. B 110, 6264–6269 (2006)

    Article  Google Scholar 

  23. Irving, J.H., Kirkwood, J.G.: The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics. J. Chem. Phys. 18, 817–829 (1950)

    MathSciNet  Google Scholar 

  24. Neyt, J.-C., Wender, A., Lachet, V., Malfreyt, P.: Prediction of the Temperature Dependence of the Surface Tension Of SO2, N2, O2, and Ar by Monte Carlo Molecular Simulations. J. Phys. Chem. B 115, 9421–9430 (2011)

    Article  Google Scholar 

  25. Mulero, A., Cachadiña, I., Parra, M.I.: Recommended correlations for the surface tension of common fluids. J. Phys. Chem. Ref. Data 41 043105–1–043105–13 (2012)

    Google Scholar 

  26. Blagoi, Y.P., Kireev, V.A., Lobko, M.P., Pashkov, V.V.: Surface tension of Krypton, Methane, Deuteromethane and Oxygen. Ukr. Fiz. Zh. 15, 427–432 (1970)

    Google Scholar 

  27. Ostromoukhov, V.B., Ostronov, M.G.: Surface Tension of Liquid Solutions O2 −N2 at 54–77 K. Zh. Fiz. Khim. 68, 39–43 (1994)

    Google Scholar 

  28. Baidakov, V.G., Khvostov, K.V., Muratov, G.N.: Surface-tension of Nitrogen, Oxygen and Methane in a wide temperature-range. Zh. Fiz. Khim. 56, 814–817 (1982)

    Google Scholar 

  29. Sun, Y., Shekunov, B.Y.: Surface tension of ethanol in supercritical CO2. J. Supercrit. Fluid. 27, 73–83 (2003)

    Article  Google Scholar 

  30. Schmidt, R., Wagner, W.: A new form of the equation of state for pure substances and its application to oxygen. Fluid Phase Equilibr. 19, 175–200 (1985)

    Article  Google Scholar 

  31. Span, R., Lemmon, E.W., Jacobsen, R.T., Wagner, W., Yokozeki, A.: A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa. J. Phys. Chem. Ref. Data 29, 1361–1433 (2000)

    Google Scholar 

  32. Eckelsbach, S., Miroshnichenko, S., Rutkai, G., Vrabec, J.: Surface tension, large scale thermodynamic data generation and vapor-liquid equilibria of real compounds. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds.) High Performance Computing in Science and Engineering’13, pp. 635–646. Springer, Berlin (2013)

    Google Scholar 

  33. Lustig, R.: Statistical analogues for fundamental equation of state derivatives. Mol. Phys. 110, 3041–3052 (2012)

    Article  Google Scholar 

  34. Lustig, R.: Microcanonical Monte Carlo simulation of thermodynamic properties. J. Chem. Phys. 109, 8816–8828 (1998)

    Article  Google Scholar 

  35. Eckl, B., Vrabec, J., Hasse, H.: On the application of force fields for predicting a wide variety of properties: Ethylene oxide as an example. Fluid Phase Equilibr. 274, 16–26 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support by Deutsche Forschungsgemeinschaft. This work was carried out under the auspices of the Boltzmann-Zuse Society (BZS) of Computational Molecular Engineering. The simulations were performed on the Cray XE6 (Hermit) at the High Performance Computing Center Stuttgart (HLRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadran Vrabec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Eckelsbach, S., Janzen, T., Köster, A., Miroshnichenko, S., Muñoz-Muñoz, Y.M., Vrabec, J. (2015). Molecular Models for Cyclic Alkanes and Ethyl Acetate As Well As Surface Tension Data from Molecular Simulation. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘14. Springer, Cham. https://doi.org/10.1007/978-3-319-10810-0_42

Download citation

Publish with us

Policies and ethics