Skip to main content

Discontinuous Galerkin for High Performance Computational Fluid Dynamics

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘14

Abstract

Within the scope of this report, we discuss high-order CFD simulations on the HLRS CRAY XE6 cluster. Our discontinuous Galerkin based simulation framework is tailored for high performance computing aiming at solving large scale problems. We demonstrate and analyze the HPC capabilities of the framework for an unstructured grid and present Direct Numerical Simulations and Large Eddy Simulations of compressible unsteady and turbulent flows. The investigated cases include aeroacoustic sound generation on an airfoil, high-speed compressible turbulent boundary layer flow and decaying turbulence for LES modelling development. The simulations were performed on up to 8,000 cores on the CRAY XE6 cluster exploiting the high parallel efficiency of the code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbey, H., Bataille, J.: Discrete tones of isolated airfoils. J. Fluid Mech. 134, 33–47 (1983)

    Article  Google Scholar 

  2. Babinsky, H., Harvey, J.K.: Shock Wave-Boundary-Layer Interactions. Cambridge University Press, Cambridge/New York (2011)

    Book  MATH  Google Scholar 

  3. Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys. 138(2), 251–285 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beck, A.D., Bolemann, T., Flad, D., Frank, H., Gassner, G., Hindenlang, F., Munz, C.-D.: High order discontinuous galerkin spectral element methods for transitional and turbulent flow simulations. Int. J. Numer. Methods Fluids 76(8), 522–548 (2014)

    Article  MathSciNet  Google Scholar 

  5. Desquesnes, G., Terracol, M., Sagaut, P.: Numerical investigation of the tone noise mechanism over laminar airfoils. J. Fluid Mech. 591, 155–182 (2007)

    Article  MATH  Google Scholar 

  6. Domaradzki, J.A., Loh, K.C., Yee, P.P.: Large eddy simulations using the subgrid-scale estimation model and truncated navier–stokes dynamics. Theor. Comput. Fluid Dyn. 15(6), 421–450 (2002)

    Article  MATH  Google Scholar 

  7. Drela, M.: Xfoil: an analysis and design system for low reynolds number airfoils. In: Mueller, T. (ed.) Low Reynolds Number Aerodynamics. Volume 54 of Lecture Notes in Engineering, pp. 1–12. Springer, Berlin/Heidelberg (1989)

    Chapter  Google Scholar 

  8. Fechter, S., Hindenlang, F., Frank, H., Munz, C.-D., Gassner, G.: Discontinuous galerkin schemes for the direct numerical simulation of fluid flow and acoustics. In: Proceedings of the 33rd AIAA Aeroacoustics Conference, Colorado Springs, Colorado, USA, June 2012.

    Google Scholar 

  9. Hindenlang, F., Neudorfer, J., Gassner, G., Munz, C.-D.: Unstructured three-dimensional high order grids for discontinuous galerkin schemes. In: 20th AIAA Computational Fluid Dynamics Conference, Honolulu, 27–30 June 2011, number AIAA-2011-3853, 2011

    Google Scholar 

  10. Jones, L.E., Sandberg, R.D.: Numerical analysis of tonal airfoil self-noise and acoustic feedback-loops. J. Sound Vib. 330(25), 6137–6152 (2011)

    Article  Google Scholar 

  11. Message Passing Interface Forum: MPI: a message-passing interface standard, version 2.2. Specification, Sept 2009

    Google Scholar 

  12. Moon, B., Jagadish, H., Faloutsos, C., Saltz, J.: Analysis of the clustering properties of the hilbert space-filling curve. IEEE Trans. Knowl. Data Eng. 13(1), 124–141 (2001)

    Article  Google Scholar 

  13. Orszag, S.A.: On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components. J. Atmos. Sci. 28(6), 1074–1074 (1971)

    Article  Google Scholar 

  14. Pekurovsky, D.: P3dfft: a framework for parallel computations of fourier transforms in three dimensions. SIAM J. Sci. Comput. 34(4), C192–C209 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Spalart, P.R.: Direct simulation of a turbulent boundary layer up to Re θ  = 1410. J. Fluid Mech. 187, 61–98 (1988)

    Article  MATH  Google Scholar 

  16. Tam, C.: Discrete tones of isolated airfoils. J. Acoustical Soc. Am. 55, 1173–1177 (1974)

    Article  Google Scholar 

  17. Tantikul, T., Domaradzki, J.: Large eddy simulations using truncated navier–stokes equations with the automatic filtering criterion. J. Turbul. 11(21), 1–24 (2010)

    Google Scholar 

  18. White, F.M.: Viscous Fluid Flow. McGraw-Hill, New York (1991)

    Google Scholar 

  19. Yamazaki, Y., Ishihara, T., Kaneda, Y.: Effects of wavenumber truncation on high-resolution direct numerical simulation of turbulence. J. Phys. Soc. Jpn. 71(3), 777–781 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research presented in this paper was supported in parts by the Deutsche Forschungsgemeinschaft (DFG), amongst others within the Schwerpunktprogramm 1276: MetStroem and the Graduiertenkolleg 1095: Aero-Thermodynamic Design of a Scramjet Propulsion System for Future Space Transportation Systems and the research projects IDIHOM within the European Research Framework Programme, the Boysen Stiftung, Daimler AG, Audi AG and Robert Bosch GmbH. We truly appreciate the ongoing kind support by HLRS and CRAY in Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed Atak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Atak, M. et al. (2015). Discontinuous Galerkin for High Performance Computational Fluid Dynamics. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘14. Springer, Cham. https://doi.org/10.1007/978-3-319-10810-0_33

Download citation

Publish with us

Policies and ethics