Skip to main content

Numerical Simulation of Impinging Jets

  • Conference paper
  • First Online:

Abstract

This report concentrates on the investigation of heat transfer of a confined round impinging jet. A direct numerical simulation was performed at a Reynolds number of Re = 3, 300 using a grid size of 512 × 512 × 512 points. It is shown that the dissipative scales are well resolved. This enables the examination of the impact of the jet’s turbulent flow field on the heat transfer of the impinged plate. In this study the distribution of the local Nusselt number is presented and related to the instantaneous flow field of the jet. First results of turbulent statistics are shown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adams, N.: A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comput. Phys. 127, 27–51 (1996). http://dx.doi.org/10.1006/jcph.1996.0156. doi:10.1006/jcph.1996.0156

  2. Buchlin, J.: Convective heat transfer in impinging-gas-jet arrangements. J. Appl. Fluid Mech. 4, 3 (2011)

    Google Scholar 

  3. Chung, Y.M., Luo, K.H.: Unsteady heat transfer analysis of an impinging jet. J. Heat Trans. 124, 12, (6), 1039–1048 (2002). http://dx.doi.org/10.1115/1.1469522. ISBN 0022–1481

  4. Cziesla, T., Biswas, G., Chattopadhyay, H., Mitra, N.: Large-eddy simulation of flow and heat transfer in an impinging slot jet. Int. J. Heat Fluid Flow 22(5), 500–508 (2001). http://dx.doi.org/http://dx.doi.org/10.1016/S0142-727X(01)00105-9. doi:http://dx.doi.org/10.1016/S0142--727X(01)00105--9. ISSN 0142–727X

  5. Dairay, T., Fortune, V., Lamballais, E., Brizzi, L.E.: Direct numerical simulation of the heat transfer of an impinging jet. In: 14th European Turbulence Conference, Lyon, Sept 2013. Department of Fluid Flow, Heat Transfer and Combustion, Institute PRIME. CNRS – Universite de Poitiers ENSMA

    Google Scholar 

  6. Hattori, H., Nagano, Y.: Direct numerical simulation of turbulent heat transfer in plane impinging jet. Int. J. Heat Fluid Flow 25(5), 749–758 (2004). http://dx.doi.org/http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.05.004. doi:http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.05.004. ISSN 0142–727X. Selected papers from the 4th International Symposium on Turbulence Heat and Mass Transfer

  7. Hrycak, P.: Heat transfer from impinging jets. A literature review. New Jersey Institute of Technology, 1981. Forschungsbericht

    Google Scholar 

  8. Jambunathan, K., Lai, E., Moss, M., Button, B.: A review of heat transfer data for single circular jet impingement. Int. J. Heat Fluid Flow 13(2), 106–115 (1992). http://dx.doi.org/http://dx.doi.org/10.1016/0142-727X(92)90017-4. doi:http://dx.doi.org/10.1016/0142-727X(92)90017-4. ISSN 0142–727X

  9. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992). http://dx.doi.org/10.1016/0021-9991(92)90324-R. doi:10.1016/0021–9991(92)90324–R

  10. Pirozzoli, S., Bernardini, M., Grasso, F.: Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J. Fluid Mech. 613(10), 205–231 (2008). http://dx.doi.org/10.1017/S0022112008003005. doi:10.1017/S0022112008003005. ISSN 1469–7645

  11. Sesterhenn, J.: A characteristic-type formulation of the Navier-Stokes equations for high order upwind schemes. Comput. Fluids 30(1), 37–67 (2001). http://dx.doi.org/DOI:10.1016/S0045-7930(00)00002-5. doi:10.1016/S0045–7930(00)00002–5. ISSN 0045–7930

  12. Viskanta, R.: Heat transfer to impinging isothermal gas and flame jets. Exp. Therm. Fluid Sci. 6(2), 111–134 (1993). http://dx.doi.org/http://dx.doi.org/10.1016/0894-1777(93)90022-B. doi:http://dx.doi.org/10.1016/0894-1777(93)90022-B. ISSN 0894–1777

  13. Weigand, B., Spring, S.: Multiple jet impingement – a review. Heat Trans. Res. 42(2), 101–142 (2011). ISSN 1064–2285

    Google Scholar 

  14. Wilke, R., Sesterhenn, J.: Direct numerical simulation of heat transfer of a round subsonic impinging jet. In: Active Flow and Combustion Control 2014. Notes on Numerical Fluid Mechanics and Multidisciplinary Design Conference. Springer, Cham (2014)

    Google Scholar 

  15. Zuckerman, N., Lior, N.: Impingement heat transfer: correlations and numerical modeling. J. Heat Trans. 127(5), 544–552 (2005). http://dx.doi.org/10.1115/1.1861921. ISBN 0022–1481

Download references

Acknowledgements

The simulations were performed on the national supercomputer Cray XE6 at the High Performance Computing Center Stuttgart (HLRS) under the grant number GCS-NOIJ/12993.

The authors gratefully acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) as part of collaborative research center SFB 1029 “Substantial efficiency increase in gas turbines through direct use of coupled unsteady combustion and flow dynamics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Wilke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wilke, R., Sesterhenn, J. (2015). Numerical Simulation of Impinging Jets. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘14. Springer, Cham. https://doi.org/10.1007/978-3-319-10810-0_19

Download citation

Publish with us

Policies and ethics