Skip to main content

Adsorption and Electronic Excitation of Water on TiO2 (110): Calculation of High-Dimensional Potential Energy Surfaces

  • Conference paper
  • First Online:
Book cover High Performance Computing in Science and Engineering ‘14

Abstract

By combining quantumchemical and quantumdynamical calculations, we aim to understand photochemistry on surfaces from first principles. In this project we investigate the case of water on a titanium dioxide surface. The substrate in its most stable form rutile (110) can act as a photocatalyst for water splitting. Highly accurate potential energy surfaces for the water molecule on this surface were calculated for the electronic ground and a selected excited state. A five-dimensional potential energy surface could be obtained and was fitted with the help of artificial neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klüner, T., Freund, H.J., Freitag, J., Staemmler, V.: Laser-induced desorption of NO from NiO(100): ab initio calculations of potential surfaces for intermediate excited states. J. Chem. Phys. 104(24), 10030 (1996). doi:10.1063/1.471747

    Article  Google Scholar 

  2. Klüner, T., Freund, H.J., Staemmler, V., Kosloff, R.: Theoretical investigation of laser induced desorption of small molecules from oxide surfaces: a first principles study. Phys. Rev. Lett. 80(23), 5208 (1998). http://link.aps.org/doi/10.1103/PhysRevLett.80.5208

  3. Thiel, S., Pykavy, M., Klüner, T., Freund, H.J., Kosloff, R., Staemmler, V.: Three-dimensional ab initio quantum dynamics of the photodesorption of CO from Cr2O3(0001): Stereodynamic Effects. Phys. Rev. Lett. 87(7), 077601 (2001). http://link.aps.org/doi/10.1103/PhysRevLett.87.077601

  4. Pykavy, M., Thiel, S., Klüner, T.: Laser-induced desorption of CO from Cr2O3 (0001): ab initio calculation of the four-dimensional potential energy surface for an intermediate excited state. J. Phys. Chem. B 106(48), 12556 (2002). doi:10.1021/jp026597h

    Article  Google Scholar 

  5. Thiel, S., Pykavy, M., Klüner, T., Freund, H.J., Kosloff, R., Staemmler, V.: Rotational alignment in the photodesorption of CO from Cr2O3 (0001): a systematic three-dimensional ab initio study. J. Chem. Phys. 116(2), 762 (2002). http://dx.doi.org/10.1063/1.1425383

  6. Borowski, S., Klüner, T., Freund, H.J.: Complete analysis of the angular momentum distribution of molecules desorbing from a surface. J. Chem. Phys. 119(19), 10367 (2003). http://link.aip.org/link/?JCP/119/10367/1

  7. Borowski, S., Klüner, T., Freund, H.J., Klinkmann, I., Al-Shamery, K., Pykavy, M., Staemmler, V.: Lateral velocity distributions in laser-induced desorption of CO from Cr2O3 (0001): experiment and theory. Appl. Phys. A: Mater. Sci. Process. 78(2), 223 (2004). doi:10.1007/s00339-003-2306-2

    Article  Google Scholar 

  8. Kröner, D., Mehdaoui, I., Freund, H.J., Klüner, T.: Three-dimensional ab initio simulation of laser-induced desorption of NO from NiO(100). Chem. Phys. Lett. 415(1–3), 150 (2005). http://www.sciencedirect.com/science/article/B6TFN-4H5MYSJ-6/2/3fc8feb13e07dcdc4a5cac98b7afc2ae

  9. Dittrich, S., Klüner, T.: The role of laser pulse duration in the photodesorption of NO/NiO(100). Chem. Phys. Lett. 430(4–6), 443 (2006). http://www.sciencedirect.com/science/article/B6TFN-4KW5FGW-2/2/13913091185fccbccbd6478fe6bb66d5

  10. Mehdaoui, I., Kröner, D., Pykavy, M., Freund, H.J., Klüner, T.: Photo-induced desorption of NO from NiO(100): calculation of the four-dimensional potential energy surfaces and systematic wave packet studies. Phys. Chem. Chem. Phys. 8, 1584 (2006). doi:10.1039/B512778E

    Article  Google Scholar 

  11. Dittrich, S., Klüner, T.: Calculation of thermal effects in the photodesorption of NO from NiO(100). Appl. Phys. A: Mater. Sci. Process. 88, 571 (2007). doi:10.1007/s00339-007-4055-0

    Article  Google Scholar 

  12. Mehdaoui, I., Klüner, T.: Bonding of CO and NO to NiO(100): a strategy for obtaining accurate adsorption energies. J. Phys. Chem. A 111(50), 13233 (2007). doi:10.1021/jp075703i

    Article  Google Scholar 

  13. Mehdaoui, I., Klüner, T.: Understanding surface photochemistry from first principles: the Case of CO-NiO(100). Phys. Rev. Lett. 98(3), 037601 (2007). http://link.aps.org/doi/10.1103/PhysRevLett.98.037601

  14. Mehdaoui, I., Klüner, T.: New mechanistic insight into electronically excited CO-NiO(100): a quantum dynamical analysis. Phys. Chem. Chem. Phys. 10(31), 4559 (2008). doi:10.1039/b805597a

    Article  Google Scholar 

  15. Klüner, T.: Photodesorption of diatomic molecules from surfaces: a theoretical approach based on first principles. Prog. Surf. Sci. 85(5–8), 279 (2010). http://www.sciencedirect.com/science/article/B6TJF-50RV8BY-1/2/4c11c05444ae24d2c97d877df68052d5

  16. Mehring, M., Klüner, T.: Understanding surface photochemistry from first principles: the case of CO-TiO2(110). Chem. Phys. Lett. 513(4–6), 212 (2011). http://www.sciencedirect.com/science/article/pii/S0009261411009444

  17. Mitschker, J., Klüner, T.: Adsorption and photodesorption of CO from single C60 molecules studied from first principles. Chem. Phys. Lett. 514(1–3), 83 (2011). doi:10.1016/j.cplett.2011.08.013

    Article  Google Scholar 

  18. Mitschker, J., Klüner, T.: New insight into CO photodesorption from C60. J. Phys. Chem. A 116(46), 11211 (2012). doi:10.1021/jp305133z

    Article  Google Scholar 

  19. Mehring, M., Klüner, T.: Calculation of two-dimensional potential energy surfaces of CO on a rutile(110) surface: ground and excited states. Mol. Phys. 111, 1612 (2013). doi:10.1080/00268976.2013.780106

    Article  Google Scholar 

  20. Arndt, M., Murali, S., Klüner, T.: Interaction of NO with the TiO2(110) surface: a quantum chemical study. Chem. Phys. Lett. 556, 98 (2013). doi:10.1016/j.cplett.2012.11.057

    Article  Google Scholar 

  21. Fujishima, A., Rao, T.N., Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 1(1), 1 (2000). doi:10.1016/S1389-5567(00)00002-2

    Article  Google Scholar 

  22. Fujishima, A., Zhang, X., Tryk, D.A.: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515 (2008). doi:10.1016/j.surfrep.2008.10.001

    Article  Google Scholar 

  23. Karlström, G., Lindh, R., Malmqvist, P.Å., Roos, B.O., Ryde, U., Veryazov, V., Widmark, P.O., Cossi, M., Schimmelpfennig, B., Neogrády, P., Seijo, L.: MOLCAS: a program package for computational chemistry. Comput. Mater. Sci. 28, 222 (2003). http://www.sciencedirect.com/science/article/pii/S0927025603001095

  24. Sousa, C., Tosoni, S., Illas, F.: Theoretical approaches to excited-State-related phenomena in oxide surfaces. Chem. Rev. 113(6), 4456 (2013). doi:10.1021/cr300228z

    Article  Google Scholar 

  25. Sousa, C., Illas, F.: Ionic-covalent transition in titanium oxides. Phys. Rev. B 50, 13974 (1994). doi:10.1103/PhysRevB.50.13974

    Article  Google Scholar 

  26. Kowalski, P.M., Meyer, B., Marx, D.: Composition, structure, and stability of the rutile TiO2(110) surface: oxygen depletion, hydroxylation, hydrogen migration, and water adsorption. Phys. Rev. B 79(11), 115410 (2009). http://link.aps.org/doi/10.1103/PhysRevB.79.115410

  27. Mota, R., Parafita, R., Giuliani, A., Hubin-Franskin, M.J., Lourenço, J., Garcia, G., Hoffmann, S., Mason, N., Ribeiro, P., Raposo, M., Limão-Vieira, P.: Water VUV electronic state spectroscopy by synchrotron radiation. Chem. Phys. Lett. 416(1–3), 152 (2005). doi:10.1016/j.cplett.2005.09.073

    Article  Google Scholar 

  28. Harich, S.A., Hwang, D.W.H., Yang, X., Lin, J.J., Yang, X., Dixon, R.N.: Photodissociation of H2O at 121.6 nm: a state-to-state dynamical picture. J. Chem. Phys. 113(22), 10073 (2000). doi:http://dx.doi.org/10.1063/1.1322059

  29. Maksyutenko, P., Rizzo, T.R., Boyarkin, O.V.: A direct measurement of the dissociation energy of water. J. Chem. Phys. 125(18), 181101 (2006). doi:http://dx.doi.org/10.1063/1.2387163

  30. Bukas, V.J., Meyer, J., Alducin, M., Reuter, K.: Ready, set and no action: a static perspective on potential energy surfaces commonly used in gas-surface dynamics. Z. Phys. Chem. 227, 1523 (2013). http://www.degruyter.com/view/j/zpch.2013.227.issue-9-11/zpch-2013-0410/zpch-2013-0410.xml

  31. Behler, J.: Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys. Chem. Chem. Phys. 13, 17930 (2011). doi:10.1039/C1CP21668F

    Article  Google Scholar 

  32. Behler, J.: Chemical Modelling: Applications and Theory, vol. 7, pp. 1–41. The Royal Society of Chemistry (2010). doi:10.1039/9781849730884-00001

    Google Scholar 

  33. MATLAB, version 8.2.0.701 (R2013b). The MathWorks Inc., Natick (2013)

    Google Scholar 

  34. Sun, C., Liu, L.M., Selloni, A., Lu, G.Q.M., Smith, S.C.: Titania-water interactions: a review of theoretical studies. J. Mater. Chem. 20(46), 10319 (2010). http://dx.doi.org/10.1039/C0JM01491E

Download references

Acknowledgements

We like to thank Prof. Dr. Bernd Meyer from Erlangen for providing the geometry of the relaxed surfaces. Some of the simulations were performed at the HPC Cluster HERO, located at the University of Oldenburg and funded by the DFG through its Major Research Instrumentation Programme (INST 184/108-1 FUGG) and the Ministry of Science and Culture of the Lower Saxony State.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Klüner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mitschker, J., Klüner, T. (2015). Adsorption and Electronic Excitation of Water on TiO2 (110): Calculation of High-Dimensional Potential Energy Surfaces. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘14. Springer, Cham. https://doi.org/10.1007/978-3-319-10810-0_14

Download citation

Publish with us

Policies and ethics