Skip to main content

Clinical Presentations and Coronary Plaque Characteristics

  • Chapter
  • First Online:
  • 1398 Accesses

Abstract

Despite a marked decline in cardiovascular mortality over the last several decades, ischemic coronary artery disease (CAD) still remains one of the leading causes of morbidity and mortality in the United States. This has prompted efforts to improve our understanding of the pathophysiology of CAD using in vivo imaging modalities. Due to its high resolution (10–15 μm), optical coherence tomography (OCT) enables an “optical biopsy” of the coronary artery wall, in vivo and in real time, and represents the modality of choice for the assessment of thin-cap fibroatheroma and other important microstructures such as neovascularization, macrophage density, microcalcifications, and cholesterol crystals. The present chapter focuses on the utility of intracoronary OCT, both as a diagnostic modality and as a research tool, in the detailed characterization of coronary atherosclerosis, in relation to the different clinical presentations (i.e., stable angina vs. acute coronary syndromes), and to the traditional cardiovascular risk factors (i.e., diabetes mellitus, dyslipidemia, smoking, hypertension) and other predisposing conditions (i.e., metabolic syndrome, chronic kidney disease).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–292.

    Article  PubMed  Google Scholar 

  2. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54(1):49–57.

    Article  PubMed  Google Scholar 

  3. Potkin BN, Bartorelli AL, Gessert JM, Neville RF, Almagor Y, Roberts WC, et al. Coronary artery imaging with intravascular high-frequency ultrasound. Circulation. 1990;81(5):1575–85.

    Article  CAS  PubMed  Google Scholar 

  4. Garcia-Garcia HM, Mintz GS, Lerman A, Vince DG, Margolis MP, van Es GA, et al. Tissue characterisation using intravascular radiofrequency data analysis: recommendations for acquisition, analysis, interpretation and reporting. EuroIntervention. 2009;5(2):177–89.

    Google Scholar 

  5. Gardner CM, Tan H, Hull EL, Lisauskas JB, Sum ST, Meese TM, et al. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc Imaging. 2008;1(5):638–48.

    Article  PubMed  Google Scholar 

  6. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111(12):1551–5.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39(4):604–9.

    Article  PubMed  Google Scholar 

  8. Jang IK. Optical coherence tomography or intravascular ultrasound? JACC Cardiovasc Interv. 2011;4(5):492–4.

    Article  PubMed  Google Scholar 

  9. Di Vito L, Yoon JH, Kato K, Yonetsu T, Vergallo R, Costa M, et al. Comprehensive overview of definitions for optical coherence tomography-based plaque and stent analyses. Coron Artery Dis. 2014;25(2):172–85.

    Article  PubMed  Google Scholar 

  10. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.

    Article  CAS  PubMed  Google Scholar 

  11. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35.

    Article  CAS  PubMed  Google Scholar 

  12. Yonetsu T, Kakuta T, Lee T, Takahashi K, Kawaguchi N, Yamamoto G, et al. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J. 2011;32(10):1251–9.

    Article  PubMed  Google Scholar 

  13. Tian J, Ren X, Vergallo R, Xing L, Yu H, Jia H, et al. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study. J Am Coll Cardiol. 2014;63(21):2209–16.

    Article  PubMed  Google Scholar 

  14. Tian J, Hou J, Xing L, Kim SJ, Yonetsu T, Kato K, et al. Significance of intraplaque neovascularisation for vulnerability: optical coherence tomography study. Heart. 2012;98(20):1504–9.

    Article  PubMed  Google Scholar 

  15. Kitabata H, Tanaka A, Kubo T, Takarada S, Kashiwagi M, Tsujioka H, et al. Relation of microchannel structure identified by optical coherence tomography to plaque vulnerability in patients with coronary artery disease. Am J Cardiol. 2010;105(12):1673–8.

    Article  PubMed  Google Scholar 

  16. Uemura S, Ishigami K, Soeda T, Okayama S, Sung JH, Nakagawa H, et al. Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques. Eur Heart J. 2012;33(1):78–85.

    Article  PubMed  Google Scholar 

  17. Tian J, Hou J, Xing L, Kim SJ, Yonetsu T, Kato K, et al. Does neovascularization predict response to statin therapy? Optical coherence tomography study. Int J Cardiol. 2012;158(3):469–70.

    Article  PubMed  Google Scholar 

  18. Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107(1):113–9.

    Article  PubMed  Google Scholar 

  19. MacNeill BD, Jang IK, Bouma BE, Iftimia N, Takano M, Yabushita H, et al. Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol. 2004;44(5):972–9.

    Article  PubMed  Google Scholar 

  20. van Soest G, Goderie T, Regar E, Koljenovic S, van Leenders GL, Gonzalo N, et al. Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. J Biomed Opt. 2010;15(1):011105.

    Article  PubMed  Google Scholar 

  21. Crea F, Liuzzo G. Pathogenesis of acute coronary syndromes. J Am Coll Cardiol. 2013;61(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  22. Jia H, Abtahian F, Aguirre AD, Lee S, Chia S, Lowe H, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62(19):1748–58.

    Article  PubMed  Google Scholar 

  23. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8 Suppl):C13–8.

    Article  CAS  PubMed  Google Scholar 

  24. Prati F, Uemura S, Souteyrand G, Virmani R, Motreff P, Di Vito L, et al. OCT-based diagnosis and management of STEMI associated with intact fibrous cap. JACC Cardiovasc Imaging. 2013;6(3):283–7.

    Article  PubMed  Google Scholar 

  25. Tanaka A, Shimada K, Tearney GJ, Kitabata H, Taguchi H, Fukuda S, et al. Conformational change in coronary artery structure assessed by optical coherence tomography in patients with vasospastic angina. J Am Coll Cardiol. 2011;58(15):1608–13.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Alfonso F, Paulo M, Gonzalo N, Dutary J, Jimenez-Quevedo P, Lennie V, et al. Diagnosis of spontaneous coronary artery dissection by optical coherence tomography. J Am Coll Cardiol. 2012;59(12):1073–9.

    Article  PubMed  Google Scholar 

  27. Deanfield JE, Maseri A, Selwyn AP, Ribeiro P, Chierchia S, Krikler S, et al. Myocardial ischaemia during daily life in patients with stable angina: its relation to symptoms and heart rate changes. Lancet. 1983;2(8353):753–8.

    Article  CAS  PubMed  Google Scholar 

  28. Sukhova GK, Schonbeck U, Rabkin E, Schoen FJ, Poole AR, Billinghurst RC, et al. Evidence for increased collagenolysis by interstitial collagenases-1 and −3 in vulnerable human atheromatous plaques. Circulation. 1999;99(19):2503–9.

    Article  CAS  PubMed  Google Scholar 

  29. Shah PK, Falk E, Badimon JJ, Fernandez-Ortiz A, Mailhac A, Villareal-Levy G, et al. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation. 1995;92(6):1565–9.

    CAS  PubMed  Google Scholar 

  30. Burke AP, Farb A, Malcom GT, Liang Y, Smialek JE, Virmani R. Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA. 1999;281(10):921–6.

    Article  CAS  PubMed  Google Scholar 

  31. Tanaka A, Imanishi T, Kitabata H, Kubo T, Takarada S, Tanimoto T, et al. Morphology of exertion-triggered plaque rupture in patients with acute coronary syndrome: an optical coherence tomography study. Circulation. 2008;118(23):2368–73.

    Article  PubMed  Google Scholar 

  32. Ino Y, Kubo T, Tanaka A, Kuroi A, Tsujioka H, Ikejima H, et al. Difference of culprit lesion morphologies between ST-segment elevation myocardial infarction and non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study. JACC Cardiovasc Interv. 2011;4(1):76–82.

    Article  PubMed  Google Scholar 

  33. Braunwald E. Unstable angina. A classification. Circulation. 1989;80(2):410–4.

    Article  CAS  PubMed  Google Scholar 

  34. Mizukoshi M, Imanishi T, Tanaka A, Kubo T, Liu Y, Takarada S, et al. Clinical classification and plaque morphology determined by optical coherence tomography in unstable angina pectoris. Am J Cardiol. 2010;106(3):323–8.

    Article  PubMed  Google Scholar 

  35. Scirica BM, Cannon CP, McCabe CH, Murphy SA, Anderson HV, Rogers WJ, et al. Prognosis in the thrombolysis in myocardial ischemia III registry according to the Braunwald unstable angina pectoris classification. Am J Cardiol. 2002;90(8):821–6.

    Article  PubMed  Google Scholar 

  36. Kato K, Yonetsu T, Kim SJ, Xing L, Lee H, McNulty I, et al. Nonculprit plaques in patients with acute coronary syndromes have more vulnerable features compared with those with non-acute coronary syndromes: a 3-vessel optical coherence tomography study. Circ Cardiovasc Imaging. 2012;5(4):433–40.

    Article  PubMed  Google Scholar 

  37. Asakura M, Ueda Y, Yamaguchi O, Adachi T, Hirayama A, Hori M, et al. Extensive development of vulnerable plaques as a pan-coronary process in patients with myocardial infarction: an angioscopic study. J Am Coll Cardiol. 2001;37(5):1284–8.

    Article  CAS  PubMed  Google Scholar 

  38. Thieme T, Wernecke KD, Meyer R, Brandenstein E, Habedank D, Hinz A, et al. Angioscopic evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes. J Am Coll Cardiol. 1996;28(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  39. O’Brien KD, McDonald TO, Chait A, Allen MD, Alpers CE. Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation. 1996;93(4):672–82.

    Article  PubMed  Google Scholar 

  40. Vergallo R, Ren X, Yonetsu T, Kato K, Uemura S, Yu B, et al. Pancoronary plaque vulnerability in patients with acute coronary syndrome and ruptured culprit plaque: a 3-vessel optical coherence tomography study. Am Heart J. 2014;167(1):59–67.

    Article  PubMed  Google Scholar 

  41. Charo IF, Taub R. Anti-inflammatory therapeutics for the treatment of atherosclerosis. Nat Rev Drug Discov. 2011;10(5):365–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Vogel RA. PCSK9 inhibition: the next statin? J Am Coll Cardiol. 2012;59(25):2354–5.

    Article  PubMed  Google Scholar 

  43. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34.

    Article  CAS  PubMed  Google Scholar 

  44. Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16(2):434–44.

    Article  CAS  PubMed  Google Scholar 

  45. Hess K, Grant PJ. Inflammation and thrombosis in diabetes. Thromb Haemost. 2011;105 Suppl 1:S43–54.

    Article  CAS  PubMed  Google Scholar 

  46. Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Varghese PJ, et al. Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol. 2004;24(7):1266–71.

    Article  CAS  PubMed  Google Scholar 

  47. Kato K, Yonetsu T, Kim SJ, Xing L, Lee H, McNulty I, et al. Comparison of nonculprit coronary plaque characteristics between patients with and without diabetes: a 3-vessel optical coherence tomography study. JACC Cardiovasc Interv. 2012;5(11):1150–8.

    Article  PubMed  Google Scholar 

  48. Marso SP, Mercado N, Maehara A, Weisz G, Mintz GS, McPherson J, et al. Plaque composition and clinical outcomes in acute coronary syndrome patients with metabolic syndrome or diabetes. JACC Cardiovasc Imaging. 2012;5(3 Suppl):S42–52.

    Article  PubMed  Google Scholar 

  49. Niccoli G, Giubilato S, Di Vito L, Leo A, Cosentino N, Pitocco D, et al. Severity of coronary atherosclerosis in patients with a first acute coronary event: a diabetes paradox. Eur Heart J. 2013;34(10):729–41.

    Article  PubMed  Google Scholar 

  50. Chia S, Raffel OC, Takano M, Tearney GJ, Bouma BE, Jang IK. Comparison of coronary plaque characteristics between diabetic and non-diabetic subjects: An in vivo optical coherence tomography study. Diabetes Res Clin Pract. 2008;81(2):155–60.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Feng T, Yundai C, Lian C, Zhijun S, Changfu L, Jun G, et al. Assessment of coronary plaque characteristics by optical coherence tomography in patients with diabetes mellitus complicated with unstable angina pectoris. Atherosclerosis. 2010;213(2):482–5.

    Article  PubMed  Google Scholar 

  52. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.

    Article  PubMed  Google Scholar 

  53. Wilson PW, Myers RH, Larson MG, Ordovas JM, Wolf PA, Schaefer EJ. Apolipoprotein E alleles, dyslipidemia, and coronary heart disease. The Framingham Offspring Study. JAMA. 1994;272(21):1666–71.

    Article  CAS  PubMed  Google Scholar 

  54. Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350(15):1495–504.

    Article  CAS  PubMed  Google Scholar 

  55. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344(8934):1383–9.

    Google Scholar 

  56. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto Jr AM, Kastelein JJ, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–207.

    Article  CAS  PubMed  Google Scholar 

  57. Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004;291(9):1071–80.

    Article  CAS  PubMed  Google Scholar 

  58. Nissen SE, Tuzcu EM, Schoenhagen P, Crowe T, Sasiela WJ, Tsai J, et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med. 2005;352(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  59. Takarada S, Imanishi T, Ishibashi K, Tanimoto T, Komukai K, Ino Y, et al. The effect of lipid and inflammatory profiles on the morphological changes of lipid-rich plaques in patients with non-ST-segment elevated acute coronary syndrome: follow-up study by optical coherence tomography and intravascular ultrasound. JACC Cardiovasc Interv. 2010;3(7):766–72.

    Article  PubMed  Google Scholar 

  60. Ozaki Y, Tanaka A, Komukai K, Ishibashi K, Tanimoto T, Kitabata H, et al. High-density lipoprotein cholesterol level is associated with fibrous cap thickness in acute coronary syndrome. Circ J. 2013;77(12):2982–9.

    Article  CAS  PubMed  Google Scholar 

  61. Matsuo Y, Kubo T, Okumoto Y, Ishibashi K, Komukai K, Tanimoto T, et al. Circulating malondialdehyde-modified low-density lipoprotein levels are associated with the presence of thin-cap fibroatheromas determined by optical coherence tomography in coronary artery disease. Eur Heart J Cardiovasc Imaging. 2013;14(1):43–50.

    Article  PubMed  Google Scholar 

  62. Steinberg D, Lewis A. Conner memorial lecture. Oxidative modification of LDL and atherogenesis. Circulation. 1997;95(4):1062–71.

    Article  CAS  PubMed  Google Scholar 

  63. Nasu K, Terashima M, Habara M, Ko E, Ito T, Yokota D, et al. Impact of cholesterol metabolism on coronary plaque vulnerability of target vessels: a combined analysis of virtual histology intravascular ultrasound and optical coherence tomography. JACC Cardiovasc Interv. 2013;6(7):746–55.

    Article  PubMed  Google Scholar 

  64. Ezzati M, Henley SJ, Thun MJ, Lopez AD. Role of smoking in global and regional cardiovascular mortality. Circulation. 2005;112(4):489–97.

    Article  PubMed  Google Scholar 

  65. Csordas A, Bernhard D. The biology behind the atherothrombotic effects of cigarette smoke. Nat Rev Cardiol. 2013;10(4):219–30.

    Article  CAS  PubMed  Google Scholar 

  66. Ramsdale DR, Faragher EB, Bray CL, Bennett DH, Ward C, Beton DC. Smoking and coronary artery disease assessed by routine coronary arteriography. Br Med J (Clin Res Ed). 1985;290(6463):197–200.

    Article  CAS  Google Scholar 

  67. Yonetsu T, Kato K, Kim SJ, Xing L, Jia H, McNulty I, et al. Predictors for neoatherosclerosis: a retrospective observational study from the optical coherence tomography registry. Circ Cardiovasc Imaging. 2012;5(5):660–6.

    Article  PubMed  Google Scholar 

  68. Vergallo R, Yonetsu T, Uemura S, Park SJ, Lee S, Kato K, et al. Correlation between degree of neointimal hyperplasia and incidence and characteristics of neoatherosclerosis as assessed by optical coherence tomography. Am J Cardiol. 2013;112(9):1315–21.

    Article  PubMed  Google Scholar 

  69. Rodriguez-Granillo GA, Garcia-Garcia HM, Mc Fadden EP, Valgimigli M, Aoki J, de Feyter P, et al. In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol. 2005;46(11):2038–42.

    Article  PubMed  Google Scholar 

  70. Philipp S, Bose D, Wijns W, Marso SP, Schwartz RS, Konig A, et al. Do systemic risk factors impact invasive findings from virtual histology? Insights from the international virtual histology registry. Eur Heart J. 2010;31(2):196–202.

    Article  PubMed  Google Scholar 

  71. Abtahian F, Yonetsu T, Kato K, Jia H, Vergallo R, Tian J, et al. Smoking is associated with presence of vulnerable plaques: a three vessel optical coherence tomography study [abstract]. Circulation. 2013;128, A12724.

    Google Scholar 

  72. Hasdai D, Garratt KN, Grill DE, Lerman A, Holmes Jr DR. Effect of smoking status on the long-term outcome after successful percutaneous coronary revascularization. N Engl J Med. 1997;336(11):755–61.

    Article  CAS  PubMed  Google Scholar 

  73. Lawes CM, Vander Hoorn S, Rodgers A. Global burden of blood-pressure-related disease, 2001. Lancet. 2008;371(9623):1513–8.

    Article  PubMed  Google Scholar 

  74. Escobar E. Hypertension and coronary heart disease. J Hum Hypertens. 2002;16 Suppl 1:S61–3.

    Article  PubMed  Google Scholar 

  75. Tsioufis C, Latsios G, Tsiachris D, Dimitriadis K, Roussos D, Kallikazaros I, et al. Lack of correlation between coronary flow reserve and vascular remodelling in hypertensive patients without left ventricular hypertrophy: an optical coherence tomography study. Hellenic J Cardiol. 2012;53(6):426–31.

    PubMed  Google Scholar 

  76. Grundy SM, Brewer Jr HB, Cleeman JI, Smith Jr SC, Lenfant C. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109(3):433–8.

    Article  PubMed  Google Scholar 

  77. Gami AS, Witt BJ, Howard DE, Erwin PJ, Gami LA, Somers VK, et al. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol. 2007;49(4):403–14.

    Article  CAS  PubMed  Google Scholar 

  78. Yonetsu T, Kato K, Uemura S, Kim BK, Jang Y, Kang SJ, et al. Features of coronary plaque in patients with metabolic syndrome and diabetes mellitus assessed by 3-vessel optical coherence tomography. Circ Cardiovasc Imaging. 2013;6(5):665–73.

    Article  PubMed  Google Scholar 

  79. Schiffrin EL, Lipman ML, Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation. 2007;116(1):85–97.

    Article  PubMed  Google Scholar 

  80. Kato K, Yonetsu T, Jia H, Abtahian F, Vergallo R, Hu S, et al. Nonculprit coronary plaque characteristics of chronic kidney disease. Circ Cardiovasc Imaging. 2013;6(3):448–56.

    Article  PubMed  Google Scholar 

  81. Baber U, Stone GW, Weisz G, Moreno P, Dangas G, Maehara A, et al. Coronary plaque composition, morphology, and outcomes in patients with and without chronic kidney disease presenting with acute coronary syndromes. JACC Cardiovasc Imaging. 2012;5(3 Suppl):S53–61.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ik-Kyung Jang MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vergallo, R., Jang, IK. (2015). Clinical Presentations and Coronary Plaque Characteristics. In: Jang, IK. (eds) Cardiovascular OCT Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-10801-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10801-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10800-1

  • Online ISBN: 978-3-319-10801-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics