Skip to main content

Stem Cells in Regenerative Therapy

  • Chapter
  • First Online:
Bioengineering
  • 2843 Accesses

Abstract

This chapter will teach you about origin, classification, features of stem cells and fundaments of stem cell therapy as the segment of cellular–based therapy. Generally, the Stem Cell (SC)—compartment is divided into embryonic and tissue specific or adult SCs. Paul Niehans, M.D., (1882–1971), the originator of cell therapy, wrote:Cellular therapy is a method of treating the whole organism on a biological basis, capable of revitalizing the human organism with its trillions of cells by bringing to it those embryonic or young cells which it needs. Cells from all organs are at our disposal; the doctor’s art is to choose the right cells. Selective cellular therapy offers new life to the ailing or diseased organism.

Mankind is searching for a key to longevity and there is no doubt that stem cells could be an important answer to this problem.

Ratajczak M. (–present)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pavlovic, M., Balint, B.: Stem Cells and Tissue Engineering. Springer, New York (2013). ISBN: 978-1-4614-5505-9 (eBook)

    Book  Google Scholar 

  2. Saltzman, M.W.: Biomedical Engineering. Cambridge University, New York (2009). ISBN: 978-0-521-840099-6(hardback)

    Book  Google Scholar 

  3. Ratajczak, M., Ratajczak, J., Shin, D.M., Wan, W., Liu, R., Masternak, M.M., Piotrowska, K., et al.: Higher number of stem cells in the bone marrow of circulating low Igf-1 level LaronDwarf novel view on Igf-1, stem cells and aging. Leukemia 25, 29–733 (2011)

    Google Scholar 

  4. Balint, B., Todorović, M., Jevtić, M., Ostojić, G., Ristanović, E., Vojvodić, D., et al.: The use of stem cells for marrow repopulation and in the field of regenerative medicine. Mak. Med. Pregl. 63(Suppl 75), str. 12 (2009)

    Google Scholar 

  5. Mayfield, J., Pavlovic, M.: Current modalities and the implications of cancer stem cell engineering in oncological treatment. ART 14, (1–2), 49–59 (2014)

    Google Scholar 

  6. Pavlovic, M., Balint, B.: The use of stem cells to repair the cardiac tissue. Anest. Reanim. Transfuziol. 34, 129–150 (2006)

    Google Scholar 

  7. Li, C., et al.: Identification of pancreatic cancer stem cells. Cancer Res. 67(3), 1030–1037 (2007)

    Article  Google Scholar 

  8. Neve, R.M., et al.: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6), 515–527 (2006)

    Article  Google Scholar 

  9. Al-Hajj, M., et al.: Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. U. S. A. 100(7), 3983–3988 (2003)

    Article  Google Scholar 

  10. Reya, T., et al.: Stem cells, cancer, and cancer stem cells. Nature 414(6859), 105–111 (2001)

    Article  Google Scholar 

  11. Singh, S.K., et al.: Identification of a cancer stem cell in human brain tumors. Cancer Res. 63(18), 5821–5828 (2003)

    Google Scholar 

  12. Orlic, D., Kajstura, J., Chimenti, S., et al.: Bone marrow cells regenerate infarcted myocardium. Nature 410(6829), 701–705 (2001)

    Article  Google Scholar 

  13. Zhang, M., Methot, D., Poppa, V., Fujio, Y., Walsh, K., Murry, C.: Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell. Cardiol. 33(5), 907–921 (2001)

    Article  Google Scholar 

  14. Dow, J., Simkhovich, B.Z., Kedes, L., Kloner, R.A.: Washout of transplanted cells from the heart: a potential new hurdle for cell transplantation therapy. Cardiovasc. Res. 67(2), 301–307 (2005)

    Article  Google Scholar 

  15. http://www.ncbi.nlm.nih.gov/pubmed/17645413

  16. http://www.intechopen.com/books/apoptosis-and-medicine/apoptosis-as-a-therapeutic-target-in-cancer-and-cancer-stem-cells-novel-strategies-and-futures-persp

  17. http://stemcells.nih.gov/info/Regenerative_Medicine/pages/2006chapter9.aspx

  18. Kucia, M., Wojakowski, W., Reca, R., Machalinski, B., Gozdzik, J., Majka, M., Baran, J., Ratajczak, J., Ratajczak, M.: The migration of bone marrow-derived non-hematopoietic tissue commited stem cells is regulated in an SDF-1, HGFLIF-dependent manner. Arch. Immunol. Ther. Exp. (Warsz). March 28: 1642290 (2006)

    Google Scholar 

  19. Pavlović, M.: VSELs concept: review. MNE Medica 1, 16–17 (2008). ref. p. 43

    Google Scholar 

  20. Pavlovic, M.: Very small embryonic like cells (VSELs): review and perspectives in the light of critical data and controversies. (2014). ART 41, (1–2), 33–47 (2014)

    Google Scholar 

  21. Ratajzcak, M.Z., Kucia, M., Reca, R., Majka, M., et al.: Stem cell plasticity revised: CXR4 positive cells expressing mRNA for early muscle, liver and neural cells “hide out” in the bone marrow. Leukemia 19(1), 29–40 (2004)

    Article  Google Scholar 

  22. Kucia, M., Reca, R., Campbell, F.R., Zuba-Surma, E., Majka, M., Ratajczak, J., Ratajczak, M.Z.: A population of very small embryonic-like (VSEL) CXCR4þSSEA-1þOct-4þ stem cells identified in adult bone marrow. Leukemia 20, 857–869 (2006)

    Article  Google Scholar 

  23. Kucia, M., Halasa, M., Wysoczynski, M., Baskiewicz-Masiuk, M., Moldenhawer, S., Zuba-Surma, E., Czajka, R., Wojakowski, W., Machalinski, B., Ratajczak, M.Z.: Morphological and molecular characterization of novel population of CXCR4þ SSEA-4þOct-4þ very small embryonic-like cells purified from human cord bloodpreliminary report. Leukemia 21, 297–303 (2007)

    Article  Google Scholar 

  24. Zuba-Surma, E., Kucia, M., Abdel-Latif, A., Dawn, B., Hall, B., Singh, R., Lillard, J.W., Ratajczak, M.Z.: Morphological characterization of very small embryonic- like stem cells (VSELs) by image stream system analysis. J. Cell. Mol. Med. Nov 20: 18031297 (2007)

    Google Scholar 

  25. Zuba-Surma, E.K., Wu, W., Ratajczak, J., Kucia, M., Ratajczak, M.Z.: Very small embryonic-like stem cells in adult tissues-potential implications for ageing. Mech. Ageing Dev. 130, 58–66 (2009)

    Article  Google Scholar 

  26. Ratajczak, M., Zuba-Surma, E., Machslinski, B., Ratajczak, J., Kucia, M.: Very small embryonic-like (VSEL) stem cells: purification from adult organs, characterization, and biological significance. Stem Cell Rev. 4, 89–99 (2008)

    Article  Google Scholar 

  27. Kucia, M., Wysoczynski, M., Ratajczak, J., Ratajczak, M.Z.: Identification of very small embryonic like (VSEL) stem cells in bone marrow. Cell Tiss. Res. 331, 125–134 (2008)

    Article  Google Scholar 

  28. Suszynska, M., Zuba-Surma, E.K., Maj, M., Mierzejewska, K., Ratajczak, J., Kucia, M., Ratajczak, M.Z.: The proper criteria for identification and sorting of very small embryonic-like stem cells, and some nomenclature issues. Stem Cells Dev. 23, 702–713 (2014)

    Article  Google Scholar 

  29. Ratajczak, M., et al.: Very small embryonic/epiblast like stem cells (VSELs) and their potential role in aging and organ rejuvenation-an update and comparison to other primitive small stem cells isolated from adult tissues. AGIGMG 4(4), 235–246 (2012)

    Google Scholar 

  30. Denis Rodgerson, D.O., Harris, A.G.: A comparison of stem cells for therapeutic use. Stem Cell Reviews and Reports. Published online: 2 March 2011. http://www.neostem.com/assets/Where do stem cells come from.Pdf

  31. Kassmer, S.H., Bruscia, E.M., Zhang, P.X., Krause, D.S.: Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells. Stem Cells 30(3), 491–499 (2012). doi:10.1002/stem.1003

    Article  Google Scholar 

  32. Kassmer, S.H., Krause, D.S.: Very small embryonic-like cells: biology and function of these potential endogenous pluripotent stem cells in adult tissues. Mol. Reprod. Develop. 80, 677–690 (2013)

    Article  Google Scholar 

  33. Kassmer, S.H., Jin, H., Zhang, P.-X., Bruscia, E.M., Heydari, K., Lee, J.H., Kim, C.F., Kassmer, S.H.: Very small embryonic-like stem cells from the murine bone marrow differentiate into epithelial cells of the lung. Stem Cells 31(12), 2759–2766 (2013)

    Article  Google Scholar 

  34. Bhartiya, D.: Are mesenchymal cells indeed pluripotent stem cells or just stromal cells? OCT-4 and VSELs biology has led to better understanding. Stem Cells Int 2013, 547501 (2013). Epub 2013 Sep 25. Review

    Google Scholar 

  35. Anand, S., Bhartiya, D., Sriraman, K., Patel, H., Manjramkar, D., Bakshi, G., Dhamankar, V., Kurkure, P.: Quiescent very small embryonic-like stem cells resist oncotherapy and can restore spermatogenesis in germ cell depleted mammalian testis. Stem Cells Dev. 23, 1428 (2013)

    Article  Google Scholar 

  36. Bhartiya, D., Sriraman, K., Parte, S., Patel, H.J.: Ovarian stem cells: absence of evidence is not evidence of absence. Ovarian Res. 6(1), 65 (2013). doi:10.1186/1757-2215-6-65.13. Sep 30. [Epub ahead of print]

    Article  Google Scholar 

  37. Bhartiya, D., Unni, S., Parte, S., Anand, S.: Very small embryonic-like stem cells: implications in reproductive biology. Biomed Res Int. 2013, 682326 (2013). doi:10.1155/2013/682326. Epub 2013 Feb 13. Review

    Article  Google Scholar 

  38. Bhartiya, D., Kasiviswananthan, S., Shaikh, A.: Cellular origin of testis-derived pluripotent stem cells: a case for very small embryonic-like stem cells. Stem Cells Dev. 21(5), 670–674 (2012). doi:10.1089/scd.2011.0554. Epub 2012 Feb 8

    Article  Google Scholar 

  39. Bhartiya, D., Shaikh, A., Nagvenkar, P., Kasiviswanathan, S., Pethe, P., Pawani, H., Mohanty, S., Rao, S.G., Zaveri, K., Hinduja, I.: Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy. Stem Cells Dev. 21(1), 1–6 (2012). doi:10.1089/scd.2011.0311. Epub 2011 Aug 29

    Article  Google Scholar 

  40. Wang, J., Guo, X., Lui, M., Chu, P.J., Yoo, J., Chang, M., Yen, Y.: Identification of a distinct small cell population from human bone marrow reveals its multipotency in vivo and in vitro. PLoS One 9(1), e85112 (2014). doi:10.1371/journal.pone.0085112. eCollection 2014 Jan 17

    Article  Google Scholar 

  41. Wojakowski, W., Tendera, M., Kucia, M., Zuba-Surma, E., Paczkowska, E., Ciosek, J., Halasa, M., Krol, M., Kazmierski, M., et al.: Mobilization of bone marrow-derived Oct-4 + SSEA-4 + very small embryonic-like stem cells in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 53, 1–9 (2009)

    Article  Google Scholar 

  42. Chang, Y.J., Tien, K.E., Wen, C.H., Hsieh, T.B., Hwang, S.M.: Recovery of CD45-/Lin-/SSEA-4 + very smallembryonic-like stem cells by cord blood bank standard operating procedures. Cytotherapy 16, 560–565 (2013). doi:10.1016/j.jcyt.2013.10.00

    Article  Google Scholar 

  43. Knoepfler, P.: Stem cell blog. Taichman are VSELs the sasquatch of the stem cell field? Posted 2: http://www.ipscell.com/tag/russell-taichman/

  44. Szade, K., Bukowska-Strakova, K., Nowak, W.N., Szade, A., Kachamakova-Trojanowska, N., Zukowska, M., Jozkowicz, A., Dulak, J.: Murine bone marrow Lin−Sca-1+CD45−very small embryonic-like (VSEL) cells are heterogeneous population lacking Oct-4A expression. PLoS One 8(5), e63329 (2013). Published online 2013 May 17. doi:10.1371/journal.pone.0063329

    Article  Google Scholar 

  45. Miyanishi, M., Mori, Y., Seita, J., Chen, J.Y., Karten, S., Chan, C.K.F., Nakauchi, H., Weissman, I.L.: Do pluripotent stem cells exist in adult mice as very small embryonic stem cells? Logo Stemcr Stem Cell Reports 1(2), 198–208 (2013)

    Article  Google Scholar 

  46. D’ Ipolito, G., Diabira, S., Howard, G.A., Menei, P., Roos, B.A., Pc, S.: Marrow-isolated adult, ultilineage inducible (MIAMI) cells, a unique populationof postnatal and old human cells with extensive expamsion and differentiation potential. J. Cell Sci. 117, 2971–2981 (2004)

    Article  Google Scholar 

  47. Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W.C., Largaespada, D.A., Verfaillie, C.M.: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893), 41–49 (2002)

    Article  Google Scholar 

  48. Yoon, Y.S., Wecker, A., Heyd, L., Park, J.S., Tkebuchava, T., Kusano, K., Hanley, A., Scadova, H., Asahara, T., Losordo, D.W.: A clonally expanded novel population of multipotent stem cells derived from human bone marrow regenerates myocardium after myocardial infarction. J. Clin. Invest. 115, 326–338 (2005). PMCID: 546424

    Article  Google Scholar 

  49. Erices, A., Conget, P., Minguell, J.J.: Mesenchymal progeniitor cells in human umbilical cord blood. Br. J. Haematol. 109(3), 209–218 (2000)

    Google Scholar 

  50. Huss, R., et al.: Perspectives on the morphology and biology of CD34-negative stem cells. J. Hematother. Stem Cell Res. 9(6), 783–793 (2000)

    Article  Google Scholar 

  51. Zvaifler, N.J., Marinova-Mutafchieva, L., Adams, G., Edwards, C.J., Moss, J., Burger, J.A., Maini, R.N.: Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2(6), 477–488 (2000). Epub 2000 Aug 31

    Article  Google Scholar 

  52. Young, H.E., Steele, T.A., Bray, R.A., Hudson, J., Floyd, J.A., Hawkins, K., Thomas, K., Austin, T., Edwards, C., Cuzzourt, J., Duenzl, M., Lucas, P.A., Black Jr., A.C.: Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat. Rec. 264(1), 51–62 (2001)

    Article  Google Scholar 

  53. Ratajczak, J., Kucia, M., Reca, R., Zhang, J., Machalinski, B., Ratajczak, M.Z.: Quiescent CD34+ early erythroid progenitors are resistant to several erythropoietic ‘inhibitory’ cytokines; role of FLIP. Br. J. Haematol. 123(1), 160–169 (2003)

    Article  Google Scholar 

  54. Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., Hedrick, M.H.: Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7(2), 211–228 (2001)

    Article  Google Scholar 

  55. Ivanovic, Z., Kovacevic-Filipovic, M., Jeanne, M., Ardilouze, L., Bertot, A., Szyporta, M., Hermitte, F., Lafarge, X., Duchez, P., Vlaski, M., Milpied, N., Pavlovic, M., Praloran, V., Boiron, J.M.: CD34+ cells obtained from “good mobilizers” are more activated and exhibit lower ex vivo expansion efficiency than their counterparts from “poor mobilizers”. Transfusion 50(1), 120–127 (2010). doi:10.1111/j.1537-2995.2009.02436.x. Epub 2009 Oct 12

    Article  Google Scholar 

  56. Kucia, M.J., Wysoczynski, M., Wu, W.: Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells 26, 2083–2092 (2008)

    Article  Google Scholar 

  57. Korbling, M., Katz, R.L., Khanna, A., Ruifrok, A.C., Rondon, G., Albitar, M., Champlin, R.E., Estrov, Z.: Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. New Engl. J. Med. 346, 738–746 (2002)

    Article  Google Scholar 

  58. Kucia, M., Masternak, M., Liu, R., Shin, D.M., Ratajczak, J., Mierzejewska, K., et al.: The negative effect of prolonged somatotrophic/insulin signaling on an adult bone marrow-residing population of pluripotent very small embryonic-like stem cells (VSELs). Age (Dordr.) 35, 315–330 (2013)

    Article  Google Scholar 

  59. Kucia, M., Shin, D.M., Liu, R., Ratajczak, J., Bryndza, E., Masternak, M.M., et al.: Reduced number of VSELs in the bone marrow of growth hormone transgenic mice indicates that chronically elevated Igf1 level accelerates age-dependent exhaustion of pluripotent stem cell pool: a novel view on aging. Leukemia 25, 1370–1374 (2011)

    Article  Google Scholar 

  60. Ratajczak, M.Z., Shin, D.M., Kucia, M.: Very small embryonic/epiblast-like stem cells: a missing link to support the germ line hypothesis of cancer development? Am. J. Pathol. 174(6), 1985–1992 (2009). doi:10.2353/ajpath.2009.081143. Epub 2009 Apr 30. Review

    Article  Google Scholar 

  61. Shin, D.M., Liu, R., Klich, I., Ratajczak, J., Kucia, M., Ratajczak, M.Z.: Molecular characterization of isolated from murine adult tissues very small embryonic/epiblast like stem cells (VSELs). Mol. Cells 29(6), 533–538 (2010). doi:10.1007/s10059-010-0081-4. Epub 2010 Jun 4

    Article  Google Scholar 

  62. Ratajczak, M.Z., Liu, R., Ratajczak, J., Kucia, M., Shin, D.M.: The role of pluripotent embryonic-like stem cells residing in adult tissues in regeneration and longevity. Differentiation 81(3), 153–161 (2011). doi:10.1016/j.diff.2011.01.006. Epub 2011 Feb 19

    Article  Google Scholar 

  63. Ratajczak, M.Z., Liu, R., Marlicz, W., Blogowski, W., Starzynska, T., Wojakowski, W., Zuba-Surma, E.: Identification of very small embryonic/epiblast-like stem cells (VSELs) circulating in peripheral blood during organ/tissue injuries. Methods Cell Biol. 103, 31–54 (2011). doi:10.1016/B978-0-12-385493-3.00003-6

    Article  Google Scholar 

  64. Ratajczak, M.Z., Zuba-Surma, E.K., Shin, D.M., Ratajczak, J., Kucia, M.: Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Exp. Gerontol. 43(11), 1009–1017 (2008). doi:10.1016/j.exger.2008.06.002. Epub 2008 Jun 14

    Article  Google Scholar 

  65. Ratajczak, M.Z., Liu, R., Marlicz, W., Blogowski, T.S., Wojakowski, W., Zuba-Surma, E.: Identification of very small embryonic/epiblast-like stem cells (VSELs) circulating in peripheral blood during organ/tissue injuries methods in cell biology. Method Cell Biol 103, 31–54 (2011)

    Article  Google Scholar 

  66. Ratajczak, M.Z., Liu, R., Ratajczak, J., Kucia, M., Shin, D.M.: The role of pluripotent embryonic-like stem cells residing in adult tissues in regeneration and longevity. Differentiation 81(3), 153–161 (2011). doi:10.1016/j.diff.2011.01.006. Epub 2011 Feb 19. Review

    Article  Google Scholar 

  67. Ratajczak, M.Z., Zuba-Surma, E., Wojakowski, W., Synska, M., Mierzejewska, K., Liu, R., Ratajczak, J., Shin, M., Kucia, M.: Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate. Leukemia 28, 473–484 (2014)

    Article  Google Scholar 

  68. Suszynska, M., Zuba-Surma, E.K., Maj, M., Mierzejewska, K., Ratajczak, J., Kucia, M., Ratajczak, M.Z.: The proper criteria for identification and sorting of very small embryonic-like stem cells, and some nomenclature issues. Stem Cells Development 23(5), 1–13 (2014)

    Google Scholar 

  69. Havens, A.H., Shiozawa, S.Y., Jung, Y., Wang, J., Mishra, A., Jiang, Y., O’Neill, D.W., Krebsbach, P.H., et al.: Human and murine very small embryonic-like (VSEL) cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells Dev. 23, 689–701 (2014). doi:10.1089/scd.2013.0362

    Article  Google Scholar 

  70. Zipori, D.: The nature of stem cells: state rather than entity. Nat. Rev. Genet. 5(11), 873–878 (2004). doi:10.1038/nrg1475

    Article  Google Scholar 

  71. Zipori, D.: Biology of Stem Cells and the Molecular Basis of the Stem State. Humana, New York (2009). ISBN:160761295

    Book  Google Scholar 

  72. Zipori, D.: À la recherche d’une définition moléculaire plus que descriptive pour les cellules souches towards a molecular rather than a descriptive definition of stemness. Med Sci (Paris) 27, 303–301 (2011)

    Article  Google Scholar 

  73. Ramalho-Santos, M., et al.: Stemness: transcriptional profiling of embryonic and adult stem cells. Science 298(5593), 597–600 (2002)

    Article  Google Scholar 

  74. http://www.nature.com/nature/focus/cancerstemcells/

  75. Martins, A.M., Vunjak-Novakovic, G., Reis, R.L.: The current status of iPS cells in cardiac research and their potential for tissue engineering and regenerative medicine. Stem Cell Rev Rep 10, 177–190 (2014)

    Article  Google Scholar 

  76. Yamanaka, S.: Patient-specific pluripotent stemcells become even more accessible. Cell Stem Cell 7(1), 11–14 (2010)

    Article  MathSciNet  Google Scholar 

  77. Novakovic-Vunjak, G., Scaden, D.T.: Biomimetic platforms for human stem cell research. Cell Stem Cell 8(3), 252–261 (2011)

    Article  Google Scholar 

  78. Balint, B., Stamatović, D., Todorović, M., Jevtić, M., Ostojić, G., Pavlović, M., Lojpur, Z., Jocić, M.: Stem cells in the arrangement of bone marrow repopulation and regenerative medicine. Vojnosanit. Pregl. 64(7), 481–484 (2007)

    Article  Google Scholar 

  79. Obradovic, S., Rusovic, S., Dincic, D., Gligic, B., Baskot, B., Balint, B., et al.: Autologous pluripotent progenitor cells in the treatment of ischemic heart disease. Vojnosanit. Pregl. 60(6), 725–731 (2003). Review. Serbian. No abstract available

    Article  Google Scholar 

  80. Venkatraman, A.X., He, C., Thorvaldsen, J.L., Sugimura, R., Perry, J.M., Tao, F., Zhao, M., Christenson, M.K., Sanchez, R., et al.: Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 500, 345–349 (2013)

    Article  Google Scholar 

  81. Balint, B., Ivanović, Z., Petakov, M., Taseski, J., Jovčić, G., Stojanović, N., Milenković, P.: The cryopreservation protocol optimal for progenitor recovery is not optimal for preservation of marrow repopulating ability. Bone Marrow Transplant. 23(6), 613–619 (1999)

    Article  Google Scholar 

  82. Balint, B., Jovicic-Gojkov, D., Todorovic-Balint, M., Subota, V., Pavlovic, M., Goodrich, R.: Plasma constituent integrity in pre-storage vs post-storage riboflavin and UV-light treatment—a comparative study. Transfus. Apher. Sci. 49(3), 434–439 (2013). doi:10.1016/j.transci.2013.05.035. Epub 2013 Jun 29

    Article  Google Scholar 

  83. Balint, B., Pavlovic, M., Todorovic, M., Jevtic, M., Ristanovic, E., Ignjatovic, L.: The use of original ex vivo immunoadsorption and “multi-manner” apheresis in ABO/H-mismatched kidney transplants—a phase II clinical study. Transfus. Apher. Sci. 43(2), 141–148 (2010). doi:10.1016/j.transci.2010.07.002. Epub 2010 Jul 27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pavlovic, M. (2015). Stem Cells in Regenerative Therapy. In: Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-10798-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10798-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10797-4

  • Online ISBN: 978-3-319-10798-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics